Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Entomol ; 52(2): 230-242, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36801934

ABSTRACT

The army cutworm, Euxoa auxiliaris (Grote), is a migratory noctuid that is both an agricultural pest and an important late-season food source for grizzly bears, Ursus arctos horribilis (Linnaeus, Carnivora: Ursidae), within the Greater Yellowstone Ecosystem. Beyond the confirmation of the moths' seasonal, elevational migration in the mid-1900s, little else has been documented about their migratory patterns. To address this missing ecological component, we examined (1) migratory routes during their spring and fall migratory periods throughout their natal range, the Great Plains, and (2) natal origin at two of their summering ranges using stable hydrogen (δ2H) analyses of wings from samples collected within the areas of interest. Stable carbon (δ13C) and stable nitrogen (δ15N) analyses of wings were used to evaluate larval feeding habits of the migrants and agricultural intensity of natal origin sites, respectively. Results suggest that, rather than migrating exclusively east to west, army cutworm moths are also migrating north to south during their spring migration. Moths did not exhibit natal origin site fidelity when returning to the Great Plains. Migrants collected from the Absaroka Range had the highest probability of natal origin in Alberta, British Columbia, Saskatchewan, the most southern region of the Northwest Territories, and second highest probability of origin in Montana, Wyoming, and Idaho. Migrants collected in the Lewis Range had the highest probability of origin in the same provinces of Canada. Results suggest that migrants of the Absaroka Range fed exclusively on C3 plants as larvae and rarely fed in heavily fertilized agroecosystems.


Subject(s)
Moths , Ursidae , Animals , Ecosystem , Larva , Isotopes , British Columbia
2.
Sci Total Environ ; 806(Pt 2): 150653, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34597569

ABSTRACT

The influence of ionic strength up to 3 mol kg-1 (background electrolytes NaCl or CaCl2) on U(VI) sorption onto montmorillonite was investigated as function of pHc in absence and presence of CO2. A multi-method approach combined batch sorption experiments with spectroscopic methods (time-resolved laser-induced fluorescence spectroscopy (TRLFS) and in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR)). In the absence of atmospheric carbonate, U(VI) sorption was nearly 99% above pHc 6 in both NaCl and CaCl2 and no significant effect of ionic strength was found. At lower pH, cation exchange was strongly reduced with increasing ionic strength. In the presence of carbonate, U(VI) sorption was reduced above pHc 7.5 in NaCl and pHc 6 in CaCl2 system due to formation of aqueous UO2(CO3)x(2-2x) and Ca2UO2(CO3)3 complexes, respectively, as verified by TRLFS. A significant ionic strength effect was observed due to the formation of Ca2UO2(CO3)3(aq), which strongly decreases U(VI) sorption with increasing ionic strength. The joint analysis of determined sorption data together with literature data (giving a total of 213 experimental data points) allowed to derive a consistent set of surface complexation reactions and constants based on the 2SPNE SC/CE approach, yielding log K°≡SSOUO2+ = 2.42 ± 0.04, log K°≡SSOUO2OH = -4.49 ± 0.7, and log K°≡SSOUO2(OH)32- = -20.5 ± 0.4. Ternary uranyl carbonate surface complexes were not required to describe the data. With this reduced set of surface complexes, an improved robust sorption model was obtained covering a broad variety of geochemical settings over wide ranges of ionic strengths and groundwater compositions, which subsequently was validated by an independent original dataset. This model improves the understanding of U(VI) retention by clay minerals and enables now predictive modeling of U(VI) sorption processes in complex clay rich natural environments.


Subject(s)
Bentonite , Uranium , Adsorption , Carbonates , Hydrogen-Ion Concentration , Osmolar Concentration , Spectroscopy, Fourier Transform Infrared , Uranium/analysis
3.
Isotopes Environ Health Stud ; 57(6): 553-562, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34632885

ABSTRACT

Stable isotope techniques can be used to assess nutrient acquisition and allocation strategies used to produce offspring. Before stable isotope techniques can be employed, researchers need reliable isotope discrimination values. In this context, isotope discrimination compares the difference in the isotope ratio between the maternal-offspring tissue that occurs during nutrient transfer prior to egg laying. Currently, isotope discrimination values are unknown between the maternal blood constituents - that reflect different temporal scales of integration - and downy feathers of their offspring. In this study, we experimentally derive isotope discrimination relationships between maternal diet-blood constituents for egg laying, and between maternal blood constituents-down feathers of offspring in an experiment with 3 types of domesticated gallinaceous birds raised on known diets. Our experiment is the first to report isotope discrimination values for maternal blood constituents-down of offspring in avian taxa and provides a new sampling technique that is less invasive than previously available as collecting down does not require sampling viable eggs or individuals. Future researchers can use these results to assist in identifying nutrient sources used by adult birds to produce young.


Subject(s)
Birds , Mothers , Animals , Carbon Isotopes , Diet/veterinary , Feathers , Female , Humans , Nitrogen Isotopes , Nutrients
4.
J Colloid Interface Sci ; 591: 490-499, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33279214

ABSTRACT

The mobility of heavy metal contaminants and radionuclides in the environment is directly controlled by their interactions with charged mineral surfaces, hence an assessment of their potential toxicity, e.g. in the context of radioactive waste disposal sites, requires understanding of sorption processes on the molecular level. Here, we investigate the sorption of a variety of rare earth elements (REE) and trivalent actinides (Am, Cm) on K-feldspar using batch sorption, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and a surface complexation model. Initially, a reliable pKa for K-feldspar's surface deprotonation reaction was determined as 2.5 ± 0.02 by column titration experiments, in excellent agreement with a measured pHIEP of 2.8. Batch sorption experiments over a broad range of experimental conditions in terms of mineral grain size, pH, [M3+], ionic radius, solid/liquid ratio, ionic strength, and equilibration procedures were carried out to quantify macroscopic retention. The trivalent d-block element Y, early, mid, and late lanthanides (La, Eu, Nd, Lu), as well as two minor actinides (Am, Cm) were used for batch sorption experiments and showed similar pH dependent uptake behavior, underlining their chemical analogy. In parallel, spectroscopic investigations provided insight into surface speciation. Cm TRLFS spectra indicate the formation of three inner-sphere sorption complexes with increasing hydrolysis. Additionally, a ternary K-feldspar/Cm/silicate complex was found for pH > 10, and batch and spectroscopic data at low pH (<4) point to small amounts of outer sphere sorption complexes. Based on TRLFS data, batch sorption, and titration data, a generic geochemical sorption model was developed, that describes sorption edges for all investigated M3+/K-feldspar systems satisfactorily. The derived stability constants for the binary sorption complexes (logK1-4 = -3.6, -7.7, -11.5, and -17.4, respectively) could successfully be used to reproduce literature data. The stability constants obtained for the surface complexes were included into the database for the Smart Kd-concept, which will further improve the safety assessment of potential repositories for radioactive waste.

5.
PLoS One ; 15(10): e0240629, 2020.
Article in English | MEDLINE | ID: mdl-33048976

ABSTRACT

Dormant season livestock grazing reduces reliance on harvested feeds, but typically requires protein supplementation to maintain animal performance. Individual variation in supplement intake can impact animal performance; however, it is unknown if this variation leads to individual or herd-level effects on grazing behavior, resource utilization, and grazing impacts to native rangelands. To examine effects of protein supplementation on dormant season cattle resource use and, subsequently, post-grazing habitat conditions, we examined cattle grazing behavior, resource utilization and biomass removal of vegetation on a native rangeland in Montana. A commercial herd of 272 (yr 1) and 302 (yr 2) cows grazed a 329-ha rangeland pasture from November to January. Intake of a 30% crude protein supplement was measured for each individual. Five individuals within each of six age groups were equipped with GPS collars. Time spent grazing declined with supplement intake ([Formula: see text] = -0.05 ± 0.02; P < 0.01). Distance traveled per day had a positive asymptotic association with supplement intake ([Formula: see text] = 0.35 ± 0.09; P < 0.01). On average, resource utilization by cattle grazing dormant season forage decreased with terrain ruggedness ([Formula: see text] = -0.09 ± 0.03), but was unrelated to aspect, temperature and wind speed. Notably, we observed high individual variability in resource utilization for elevation, distance from supplement and water. A post-hoc analysis suggested that individual attributes (age, body weight, supplement intake) influenced cattle resource use. At moderate stocking rates, dormant season livestock grazing did not affect residual vegetation conditions (P values > 0.22). However, residual cover of forbs and litter increased with relative grazing intensity ([Formula: see text] = 1.04 ± 0.41; [Formula: see text] = 3.06 ± 0.89; P ≤ 0.05). In summary, high individual variability in grazing resource utilization of cattle suggests individual-level factors could be the dominant drivers in grazing behavior and landscape use.


Subject(s)
Animal Feed , Animal Husbandry/methods , Dietary Proteins/administration & dosage , Dietary Supplements , Herbivory/physiology , Age Factors , Animal Distribution/physiology , Animal Nutritional Physiological Phenomena , Animals , Biological Variation, Population , Body Weight/physiology , Cattle , Grassland , Montana , Seasons
6.
Dalton Trans ; 49(21): 7109-7122, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32406436

ABSTRACT

In the present study we have investigated the complexation of uranyl(vi) with chloride and fluoride using luminescence spectroscopy (TRLFS, time-resolved laser-induced fluorescence spectroscopy). At 25 °C (298.15 K), in the presence of 0-0.175 M fluoride, the first single-component emission spectra for all four uranyl(vi)-fluoride complexes, i.e. UO2F+, UO2F2, UO2F3-, and UO2F42- could be extracted. Based on the aqueous speciation derived from the TRLFS data, log K* values at I = 1 M were calculated for all these complexes and extrapolated to infinite dilution using the SIT approach. In the case of chloride, however, quenching of the uranyl(vi)-luminescence hampered the experiments. Thus, uranyl(vi)-complexation was studied with TRLFS at liquid nitrogen temperatures. Samples were prepared at 25 °C (298.15 K) with chloride concentrations ranging from 0 to 1.0 M followed by instantaneous freezing and subsequent luminescence spectroscopic measurements at -120 °C (153.15 K). This allowed for the determination of the first luminescence spectra for the UO2Cl+ complex with the TRLFS method. The chloride quench reaction was further studied in the temperature range 1-45 °C (274.15-318.15 K) using Stern-Volmer analysis. By applying the Arrhenius and the Eyring equations we obtained the first thermodynamic parameters for the dynamic quench process, i.e. the activation energy (Ea = 55.0 ± 12.9 kJ mol-1), enthalpy (ΔH‡ = 52.5 ± 13.0 kJ mol-1), and entropy (ΔS‡ = 103.9 ± 42.8 J mol-1 K-1).

7.
J Environ Manage ; 236: 622-630, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30771681

ABSTRACT

Animals are expected to select habitats that maximize their fitness over evolutionary time scales. Yet in human-modified landscapes, habitat selection might not always lead to increased fitness because animals undervalue high-quality resources that appear less attractive than those of lower quality. In the American West, agriculture has modified landscapes, yet little is known about whether agricultural changes alter the reliability of the cues animals use to identify habitat quality; ultimately forming maladaptive breeding strategies where behavioral cues are mismatched with survival outcomes. Using the greater sage-grouse, a species highly dependent upon sagebrush landscapes, we (1) evaluated how females select nesting habitats based on sagebrush type, along with livestock grazing related linear and point features, and other biotic, abiotic characteristics, given hypothesized influences on hiding cover, microclimate and predator travel routes and perches, (2) compared habitat selection information with results for nest survival estimates to evaluate if selection appears to be adaptive or not, and (3) used our results to evaluate the most appropriate strategies for this species in a grazing-modified landscape. Nest-site selection for sagebrush type appears to be maladaptive: in the most-preferred sagebrush type, nest survival rate was one-fourth the rate realized by females nesting in the sagebrush type avoided. Nest survival was four times higher for nests placed away from (>100 m), rather than next to (1 m), the nearest fence, and survival was lower within sites with higher cow pie density (a proxy for previous grazing intensity). Live and dead grasses influenced selection and survival in opposing ways such that dead grass was selected for but resulted in reduced survival while live grass was avoided but resulted in increased survival. Results collectively provide the first empirical evidence that a specific type of sagebrush acts as an ecological trap while another sagebrush type is undervalued. These results also suggest that adding more fences to control livestock grazing systems will likely reduce sage-grouse nest survival.


Subject(s)
Artemisia , Galliformes , Animals , Cattle , Ecosystem , Female , Humans , Nesting Behavior , Reproducibility of Results
8.
J Colloid Interface Sci ; 483: 334-342, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27569516

ABSTRACT

The sorption of pentavalent neptunium, Np(V), on corundum (α-Al2O3) was investigated in the absence and presence of trivalent europium or gadolinium as a competing element under CO2-free conditions. The objective of this study was to investigate how a trivalent metal ion with a higher charge than that of the neptunyl(V) ion would affect the sorption of Np(V) when allowed to adsorb on the mineral surface before the addition of Np(V). Batch sorption experiments conducted as a function of pH (pH-edges) and as a function of Np(V) concentration (isotherms) in the absence and presence of 1×10(-5)M Eu(III) showed no sign of Eu being able to block Np sorption sites. Surface complexation modelling using the diffuse double layer model was applied to the batch data to obtain surface complexation constants for the formed Np(V) complexes on corundum. To account for potential changes occurring in the coordination environment of the neptunium ion in the presence of a trivalent lanthanide, X-ray absorption spectroscopy (XAS) measurements were carried out on the samples containing only Np(V) and Np(V)+Gd(III). The results reveal the presence of a bidentate Np(V) edge-sharing complex on the corundum surface in the absence of Gd(III), while the coordination environment of Np(V) on the corundum surface could be changed when Gd(III) is added to the sample before the sorption of Np(V).

9.
Lett Appl Microbiol ; 47(4): 275-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18778376

ABSTRACT

AIMS: To develop a flexible and fast colony forming unit quantification method that can be operated in a standard microbiology laboratory. METHODS AND RESULTS: A miniaturized plating method is reported where droplets of bacterial cultures are spotted on agar plates. Subsequently, minicolony spots are imaged with a digital camera and quantified using a dedicated plug-in developed for the freeware program IMAGEJ. A comparison between conventional and minicolony plating of industrial micro-organisms including lactic acid bacteria, Eschericha coli and Saccharomyces cerevisiae showed that there was no significant difference in the results obtained with the methods. CONCLUSIONS: The presented method allows downscaling of plating by 100-fold, is flexible, easy-to-use and is more labour-efficient and cost-efficient than conventional plating methods. SIGNIFICANCE AND IMPACT OF THE STUDY: The method can be used for rapid assessment of viable counts of micro-organisms similar to conventional plating using standard laboratory equipment. It is faster and cheaper than conventional plating methods.


Subject(s)
Bacteria/isolation & purification , Colony Count, Microbial/methods , Bacteria/growth & development , Colony Count, Microbial/instrumentation , Colony Count, Microbial/standards , Image Processing, Computer-Assisted
10.
Appl Environ Microbiol ; 72(12): 7540-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17012592

ABSTRACT

In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30 degrees C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6 mM MT was applied, corresponding to a volumetric loading rate of 16.5 mmol liter-1 day-1. The archaeal community within the reactor was characterized by anaerobic culturing and denaturing gradient gel electrophoresis analysis, cloning, and sequencing of 16S rRNA genes and quantitative PCR. Initially, MT-fermenting methanogenic archaea related to members of the genus Methanolobus were enriched in the reactor. Later, they were outcompeted by Methanomethylovorans hollandica, which was detected in aggregates but not inside the granules that originated from the inoculum, the microbial composition of which remained fairly unchanged. Possibly other species within the Methanosarcinacaea also contributed to the fermentation of MT, but they were not enriched by serial dilution in liquid media. The archaeal community within the granules, which was dominated by Methanobacterium beijingense, did not change substantially during the reactor operation. Some of the species related to Methanomethylovorans hollandica were enriched by serial dilutions, but their growth rates were very low. Interestingly, the enrichments could be sustained only in the presence of MT and did not utilize any of the other typical substrates for methylotrophic methanogens, such as methanol, methyl amine, or dimethylsulfide.


Subject(s)
Bioreactors , Methanosarcinaceae/metabolism , Paper , Sewage/microbiology , Sulfhydryl Compounds/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Biodegradation, Environmental , Industrial Waste , Laboratories , Methanobacterium/genetics , Methanobacterium/growth & development , Methanobacterium/metabolism , Methanosarcinaceae/classification , Methanosarcinaceae/genetics , Methanosarcinaceae/growth & development , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Water Sci Technol ; 52(1-2): 13-20, 2005.
Article in English | MEDLINE | ID: mdl-16187442

ABSTRACT

In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.


Subject(s)
Bacteria, Anaerobic/metabolism , Euryarchaeota/metabolism , Sulfur-Reducing Bacteria/metabolism , Acetates/metabolism , Butyrates/metabolism , Hydrogen/metabolism , Methane/metabolism , Oxidation-Reduction , Propionates/metabolism , Sulfates/metabolism
12.
Water Res ; 38(6): 1368-75, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15016514

ABSTRACT

Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of this compound requires obligate syntrophic consortia of acetogenic proton- and bicarbonate reducing bacteria and methanogenic archaea. Although H(2) acts as an electron-carrier in these consortia, evidence accumulates that formate plays an even more important role. To make energy yield from propionate oxidation energetically feasible for the bacteria and archaea involved, the concentrations of H(2) and formate have to be extremely low. On the other hand, the diffusion distance of these carriers has to be small to allow high propionate conversion rates. Accordingly, the high conversion rates observed in methanogenic bioreactors are due to the fact that the propionate-oxidizing bacteria and their methanogenic partners form micro-colonies within the densely packed granules.


Subject(s)
Methane/analysis , Propionates/metabolism , Bacteria , Diffusion , Electrons , Hydrogen-Ion Concentration , Thermodynamics
13.
Antonie Van Leeuwenhoek ; 81(1-4): 283-91, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12448727

ABSTRACT

The syntrophic propionate-oxidizing bacterium Syntrophobacter fumaroxidans possesses two distinct formate dehydrogenases and at least three distinct hydrogenases. All of these reductases are either loosely membrane-associated or soluble proteins and at least one of the hydrogenases is located in the periplasm. These enzymes were expressed on all growth substrates tested, though the levels of each enzyme showed large variations. These findings suggest that both H2 and formate are involved in the central metabolism of the organism, and that both these compounds may serve as interspecies electron carriers during syntrophic growth on propionate.


Subject(s)
Deltaproteobacteria/enzymology , Formate Dehydrogenases/metabolism , Hydrogenase/metabolism , Cell Fractionation , Culture Media , Deltaproteobacteria/growth & development , Formate Dehydrogenases/isolation & purification , Formates/metabolism , Hydrogen/metabolism , Hydrogenase/isolation & purification , Oxidation-Reduction , Propionates/metabolism
14.
Appl Environ Microbiol ; 67(4): 1800-4, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282636

ABSTRACT

The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by (13)C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-(13)C]propionate was converted to [2-(13)C]acetate, with no [1-(13)C]acetate formed. Butyrate from [3-(13)C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-(13)C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-(13)C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-(13)C-labeled propionate yielded both [1-(13)C]acetate and [2-(13)C]acetate. When (13)C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, (13)C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.


Subject(s)
Bacteria, Anaerobic/growth & development , Bacteria, Anaerobic/metabolism , Methanospirillum/growth & development , Methanospirillum/metabolism , Propionates/metabolism , Carbon Isotopes/metabolism , Culture Media , Magnetic Resonance Spectroscopy/methods , Oxidation-Reduction
15.
J Biol Chem ; 270(51): 30453-7, 1995 Dec 22.
Article in English | MEDLINE | ID: mdl-8530474

ABSTRACT

Pyrococcus furiosus uses a modified Embden-Meyerhof pathway during growth on poly- or disaccharides. Instead of the usual ATP-dependent glucokinase, this pathway involves a novel ADP-dependent (AMP-forming) glucokinase. The level of this enzyme and some other glycolytic enzymes appeared to be closely regulated by the substrate. Growth on cellobiose resulted in a high specific activity of 0.96 units mg-1, whereas on pyruvate a 10-fold lower activity was found. The ADP-dependent glucokinase was purified 1350-fold to homogeneity. The oxygen-stable enzyme had a molecular mass of 93 kDa and was composed of two identical subunits (47 kDa). The glucokinase was highly specific for ADP, which could not be replaced by ATP, phosphoenolpyruvate, GDP, PPi, or polyphosphate. D-Glucose could be replaced only by 2-deoxy-D-glucose, albeit with a low efficiency. The Km values for D-glucose and ADP were 0.73 and 0.033 mM, respectively. An optimum temperature of 105 degrees C and a half-life of 220 min at 100 degrees C are in agreement with the requirements of this hyperthermophilic organism. The properties of the glucokinase are compared to those of less thermoactive gluco/hexokinases.


Subject(s)
Adenosine Diphosphate/metabolism , Archaea/enzymology , Glucokinase/isolation & purification , Glucokinase/metabolism , Animals , Archaea/growth & development , Aspergillus niger/enzymology , Bacteria/enzymology , Cell-Free System , Chromatography , Chromatography, Gel , Chromatography, Ion Exchange , Durapatite , Electrophoresis, Polyacrylamide Gel , Hot Temperature , Kinetics , Liver/enzymology , Rats , Saccharomyces cerevisiae/enzymology , Substrate Specificity
16.
J Biol Chem ; 269(26): 17537-41, 1994 Jul 01.
Article in English | MEDLINE | ID: mdl-8021261

ABSTRACT

The main pathway for the fermentation of maltose or cellobiose by the hyperthermophile Pyrococcus furiosus was investigated by in vivo NMR and by enzyme measurements. Addition of [1-13C]glucose to cell suspensions resulted in the formation of C2-labeled acetate and C3-labeled alanine. No label was recovered in CO2 or HCO3-. In the presence of [3-13C]glucose, the label ended up in the C1 atom of alanine and in HCO3- and CO2. These labeling patterns indicate that glucose is converted along an Embden-Meyerhof pathway, and they disagree with the previously proposed nonphosphorylated Entner-Doudoroff pathway (pyroglycolysis). The NMR data were supported by enzyme measurements. Hexokinase (8.7 units/mg), phosphoglucose isomerase (6.8 units/mg), phosphofructokinase (0.81 unit/mg), and aldolase (0.26 unit/mg) were present in cell-free extracts (specific activities at 90 degrees C). Remarkably, the two kinases required ADP as the phosphoryl group donor instead of ATP. No activity was found with pyrophosphate. These are the first descriptions of ADP-dependent (AMP-forming) kinases to date. Since P. furiosus is a phylogenetically ancient organism, these enzymes may represent an ancestral kind of metabolism.


Subject(s)
Adenosine Diphosphate/metabolism , Archaea/metabolism , Fermentation , Glucose/metabolism , Maltose/metabolism , Phosphotransferases/metabolism , Cellobiose/metabolism , Glycolysis , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...