Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 32(8): 1641-1651, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34115936

ABSTRACT

Ratiometric measurements utilizing two independent fluorescence signals from a dual-dye molecular system help to improve the detection sensitivity and quantification of many analytical, bioanalytical, and pharmaceutical assays, including drug delivery monitoring. Nevertheless, these dual-dye conjugates have never been utilized for ratiometric monitoring of antibody (Ab)-guided targeted drug delivery (TDD). Here, we report for the first time on the new, dual-dye TDD system, Cy5s-Ab-Flu-Aza, comprising the switchable fluorescein-based dye (Flu) linked to the anticancer drug azatoxin (Aza), reference pentamethine cyanine dye (Cy5s), and Her2-specific humanized monoclonal Trastuzumab (Herceptin) antibody. The ability of ratiometric fluorescence monitoring of drug release was demonstrated with this model system in vitro in the example of the human breast cancer SKBR3 cell line overexpressing Her2 receptors. The proposed approach for designing ratiometric, antibody-guided TDD systems, where a "drug-switchable dye" conjugate and a reference dye are independently linked to an antibody, can be expanded to other drugs, dyes, and antibodies. Replacement of the green-emitting dye Flu, which was found not detectable in vivo, with a longer-wavelength (red or near-IR) switchable fluorophore should enable quantification of drug release in the body.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Agents, Immunological/administration & dosage , Drug Delivery Systems , Indoles/administration & dosage , Trastuzumab/administration & dosage , Cell Line, Tumor , Fluorescent Dyes , Humans , Molecular Structure
2.
Photodiagnosis Photodyn Ther ; 31: 101866, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32534248

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) is a Gram-positive bacteria and major human pathogen which can cause a wide variety of serious infections when it enters the bloodstream or internal tissues. Antimicrobial photodynamic therapy (APDT) utilizing a light-activated dye (photosensitizer) is a powerful method for in vitro and in vivo eradication of S. aureus and other pathogenic bacteria. However, the development of highly efficient, long-wavelength photosensitizers showing high phototoxicity to pathogens and low dark toxicity is still challenging. AIM: To develop a highly efficient, long-wavelength photosensitizer for photodynamic inactivation of S. aureus. METHOD: Synthesis of the new photosensitizer, hexa-iodinated quinono-cyanine dye IQCy and investigation of the dark and light-induced toxicity of this dye compared to known photosensitizers Chlorin e6 (Ce6) and HITC towards S. aureus. RESULTS: When exposed to 14.9 J/cm2 white LED light, 0.5 µM of IQCy, Ce6 and HITC inactivate, respectively, 99 %, 40 % and 30 % of S. aureus and at 0.05 µM and 27.9 J/cm2 - 71 %, 18 % and 9%, which is much better compared to Ce6 and HITC. IQCy exhibits no dark toxicity at least at 10 µM dye concentration. CONCLUSIONS: IQCy demonstrates a more pronounced photodynamic inactivation of S. aureus as compared to Ce6 and HITC and can be employed for the eradication of these bacteria at lower concentration and reduced light dose.


Subject(s)
Photochemotherapy , Staphylococcal Infections , Hexosaminidase A , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...