Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 144, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046202

ABSTRACT

Extraction of associations of singular nucleotide polymorphism (SNP) and phenotypes from biomedical literature is a vital task in BioNLP. Recently, some methods have been developed to extract mutation-diseases affiliations. However, no accessible method of extracting associations of SNP-phenotype from content considers their degree of certainty. In this paper, several machine learning methods were developed to extract ranked SNP-phenotype associations from biomedical abstracts and then were compared to each other. In addition, shallow machine learning methods, including random forest, logistic regression, and decision tree and two kernel-based methods like subtree and local context, a rule-based and a deep CNN-LSTM-based and two BERT-based methods were developed in this study to extract associations. Furthermore, the experiments indicated that although the used linguist features could be employed to implement a superior association extraction method outperforming the kernel-based counterparts, the used deep learning and BERT-based methods exhibited the best performance. However, the used PubMedBERT-LSTM outperformed the other developed methods among the used methods. Moreover, similar experiments were conducted to estimate the degree of certainty of the extracted association, which can be used to assess the strength of the reported association. The experiments revealed that our proposed PubMedBERT-CNN-LSTM method outperformed the sophisticated methods on the task.


Subject(s)
Machine Learning , Polymorphism, Single Nucleotide , Phenotype , Random Forest , Mutation
2.
J Biomed Semantics ; 8(1): 14, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28388928

ABSTRACT

BACKGROUND: Single Nucleotide Polymorphisms (SNPs) are among the most important types of genetic variations influencing common diseases and phenotypes. Recently, some corpora and methods have been developed with the purpose of extracting mutations and diseases from texts. However, there is no available corpus, for extracting associations from texts, that is annotated with linguistic-based negation, modality markers, neutral candidates, and confidence level of associations. METHOD: In this research, different steps were presented so as to produce the SNPPhenA corpus. They include automatic Named Entity Recognition (NER) followed by the manual annotation of SNP and phenotype names, annotation of the SNP-phenotype associations and their level of confidence, as well as modality markers. Moreover, the produced corpus was annotated with negation scopes and cues as well as neutral candidates that play crucial role as far as negation and the modality phenomenon in relation to extraction tasks. RESULT: The agreement between annotators was measured by Cohen's Kappa coefficient where the resulting scores indicated the reliability of the corpus. The Kappa score was 0.79 for annotating the associations and 0.80 for the confidence degree of associations. Further presented were the basic statistics of the annotated features of the corpus in addition to the results of our first experiments related to the extraction of ranked SNP-Phenotype associations. The prepared guideline documents render the corpus more convenient and facile to use. The corpus, guidelines and inter-annotator agreement analysis are available on the website of the corpus: http://nil.fdi.ucm.es/?q=node/639 . CONCLUSION: Specifying the confidence degree of SNP-phenotype associations from articles helps identify the strength of associations that could in turn assist genomics scientists in determining phenotypic plasticity and the importance of environmental factors. What is more, our first experiments with the corpus show that linguistic-based confidence alongside other non-linguistic features can be utilized in order to estimate the strength of the observed SNP-phenotype associations. TRIAL REGISTRATION: Not Applicable.


Subject(s)
Gene Ontology , Information Storage and Retrieval/methods , Phenotype , Polymorphism, Single Nucleotide , Mutation , Semantics
3.
PLoS One ; 11(10): e0163480, 2016.
Article in English | MEDLINE | ID: mdl-27695078

ABSTRACT

MOTIVATION: Supervised biomedical relation extraction plays an important role in biomedical natural language processing, endeavoring to obtain the relations between biomedical entities. Drug-drug interactions, which are investigated in the present paper, are notably among the critical biomedical relations. Thus far many methods have been developed with the aim of extracting DDI relations. However, unfortunately there has been a scarcity of comprehensive studies on the effects of negation, complex sentences, clause dependency, and neutral candidates in the course of DDI extraction from biomedical articles. RESULTS: Our study proposes clause dependency features and a number of features for identifying neutral candidates as well as negation cues and scopes. Furthermore, our experiments indicate that the proposed features significantly improve the performance of the relation extraction task combined with other kernel methods. We characterize the contribution of each category of features and finally conclude that neutral candidate features have the most prominent role among all of the three categories.


Subject(s)
Biomedical Research , Data Mining , Drug Interactions , Publications , Algorithms , Artificial Intelligence , Humans , Natural Language Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...