Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 86(19): 10270-80, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811534

ABSTRACT

Reovirus attachment protein σ1 is an elongated trimer with head-and-tail morphology that engages cell-surface carbohydrate and junctional adhesion molecule A (JAM-A). The σ1 protein is comprised of three domains partitioned by two flexible linkers termed interdomain regions (IDRs). To determine the importance of σ1 length and flexibility at different stages of reovirus infection, we generated viruses with mutant σ1 molecules of altered length and flexibility and tested these viruses for the capacity to bind the cell surface, internalize, uncoat, induce protein synthesis, assemble, and replicate. We reduced the length of the α-helical σ1 tail to engineer mutants L1 and L2 and deleted midpoint and head-proximal σ1 IDRs to generate ΔIDR1 and ΔIDR2 mutant viruses, respectively. Decreasing length or flexibility of σ1 resulted in delayed reovirus infection and reduced viral titers. L1, L2, and ΔIDR1 viruses but not ΔIDR2 virus displayed reduced cell attachment, but altering σ1 length or flexibility did not diminish the efficiency of virion internalization. Replication of ΔIDR2 virus was hindered at a postdisassembly step. Differences between wild-type and σ1 mutant viruses were not attributable to alterations in σ1 folding, as determined by experiments assessing engagement of cell-surface carbohydrate and JAM-A by the length and IDR mutant viruses. However, ΔIDR1 virus harbored substantially less σ1 on the outer capsid. Taken together, these data suggest that σ1 length is required for reovirus binding to cells. In contrast, IDR1 is required for stable σ1 encapsidation, and IDR2 is required for a postuncoating replication step. Thus, the structural architecture of σ1 is required for efficient reovirus infection of host cells.


Subject(s)
Capsid Proteins/metabolism , Gene Expression Regulation, Viral , Reoviridae/metabolism , Animals , Capsid/metabolism , Carbohydrates/chemistry , Cell Adhesion Molecules/metabolism , Cell Line , Cell Membrane/metabolism , Fibroblasts/metabolism , Fluorescent Antibody Technique, Indirect , Gene Deletion , Genome, Viral , HeLa Cells , Humans , Mice , Mutation , Protein Binding , Protein Folding , Receptors, Cell Surface/metabolism , Virus Replication
2.
Biochem Biophys Res Commun ; 423(2): 224-8, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22634010

ABSTRACT

Cytochrome (cyt) c can uncouple from the respiratory chain following mitochondrial stress and catalyze lipid peroxidation. Accumulating evidence shows that this phenomenon impairs mitochondrial respiratory function and also initiates the apoptotic cascade. Therefore, under certain conditions a pharmacological approach that can inhibit cyt c catalyzed lipid peroxidation may be beneficial. We recently showed that acetaminophen (ApAP) at normal pharmacologic concentrations can prevent hemoprotein-catalyzed lipid peroxidation in vitro and in vivo by reducing ferryl heme to its ferric state. We report here, for the first time, that ApAP inhibits cytochrome c-catalyzed oxidation of unsaturated free fatty acids and also the mitochondrial phospholipid, cardiolipin. Using isolated mitochondria, we also showed that ApAP inhibits cardiolipin oxidation induced by the pro-apoptotic protein, tBid. We found that the IC(50) of the inhibition of cardiolipin oxidation by ApAP is similar in both intact isolated mitochondria and cardiolipin liposomes, suggesting that ApAP penetrates well into the mitochondria. Together with our previous results, the findings presented herein suggest that ApAP is a pleiotropic inhibitor of peroxidase catalyzed lipid peroxidation. Our study also provides a potentially novel pharmacological approach for inhibiting the cascade of events that can result from redox cycling of cyt c.


Subject(s)
Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Cytochromes c/metabolism , Fatty Acids, Unsaturated/metabolism , Lipid Peroxidation/drug effects , Arachidonic Acid/metabolism , Cardiolipins/metabolism , Catalysis , Humans , Mitochondria/drug effects , Mitochondria/enzymology , Oxidation-Reduction/drug effects
3.
Biochem Biophys Res Commun ; 407(1): 191-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21376016

ABSTRACT

Glycation of horse heart metmyoglobin with d-ribose 5-phosphate (R5P), d-2-deoxyribose 5-phosphate (dR5P), and d-ribose with inorganic phosphate at 37°C generates an altered protein (Myo-X) with increased SDS-PAGE mobility. The novel protein product has been observed only for reactions with the protein myoglobin and it is not evident with other common sugars reacted over a 1 week period. Myo-X is first observed at 1-2 days at 37°C along with a second form that is consistent in mass with that of myoglobin attached to several sugars. MALDI mass spectrometry and other techniques show no evidence of the cleavage of a peptide from the myoglobin chain. Apomyoglobin in reaction with R5P also exhibited this protein form suggesting its occurrence was not heme-related. While significant amounts of O(2)(-) and H(2)O(2) are generated during the R5P glycation reaction, they do not appear to play roles in the formation of the new form. The modification is likely due to an internal cross-link formed during a glycation reaction involving the N-terminus and an internal amine group; most likely the neighboring Lys133. The study shows the unique nature of these common pentose sugars in spontaneous glycation reactions with proteins.


Subject(s)
Myocardium/metabolism , Myoglobin/chemistry , Ribose/chemistry , Animals , Glycosylation , Heme/chemistry , Horses , Metmyoglobin/chemistry , Metmyoglobin/metabolism , Myoglobin/biosynthesis , Oxidation-Reduction , Ribose/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...