Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Treat Res Commun ; 36: 100744, 2023.
Article in English | MEDLINE | ID: mdl-37481995

ABSTRACT

Human p38γ protein kinase, or MAPK12, is a crucial signaling protein that is important in channelizing membrane signals to the nucleus in the MAPK cascade pathway, associated with breast and colorectal cancer, besides other forms of malignancies and atherosclerotic lesions too. P38γ has a significant contribution to the progression of breast carcinoma due to its multifaceted functions. Targeting p38γ for defining potent antagonists against p38γ can turn out to be an attractive and novel means of breast cancer therapeutics. Novel and potent lead molecules were designed utilizing computational drug design methodologies. Using high-throughput virtual screening, 1909 geometrically similar analogs of known inhibitors were generated, primarily using BIRB796, SB202190, ANP, CHEBI: 620708, and CHEBI: 524699. Chemical correctness was ensured using LigPrep for the standalone library, and Prep Wizard for p38γ using Maestro v.11.5. Using the Glide v5.5 flexible docking procedure on a standalone library of p38γ binding sites, we defined 18 potential leads and assessed their ADMET properties. Lead "1", among the proposed four p38γ antagonists with high-scoring and favorable interactions, was considered for 100 ns molecular dynamics simulations. Among the four proposed leads, Lead '1' displayed consistent and stable bonding interactions with p38γ throughout the 100 ns molecular dynamics (MD) simulations. Additionally, it formed water bridges, contributing to its strong association with the protein. Notably, Lead '1' (3-deazaadenosine) exhibited favorable root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) within the acceptable range of pharmacological properties. Thus, 3-deazaadenosine and its mimetic might be promising new directions for developing a novel class of antagonists for breast cancer treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...