Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Syst Biol ; 71(5): 1244-1254, 2022 08 10.
Article in English | MEDLINE | ID: mdl-34672354

ABSTRACT

Although molecular mechanisms associated with the generation of mutations are highly conserved across taxa, there is widespread variation in mutation rates between evolutionary lineages. When phylogenies are reconstructed based on nucleotide sequences, such variation is typically accounted for by the assumption of a relaxed molecular clock, which is a statistical distribution of mutation rates without much underlying biological mechanism. Here, we propose that variation in accumulated mutations may be partly explained by an elevated mutation rate during speciation. Using simulations, we show how shifting mutations from branches to speciation events impacts inference of branching times in phylogenetic reconstruction. Furthermore, the resulting nucleotide alignments are better described by a relaxed than by a strict molecular clock. Thus, elevated mutation rates during speciation potentially explain part of the variation in substitution rates that is observed across the tree of life. [Molecular clock; phylogenetic reconstruction; speciation; substitution rate variation.].


Subject(s)
Evolution, Molecular , Nucleotides , Biological Evolution , Models, Genetic , Mutation , Phylogeny
2.
R Soc Open Sci ; 7(8): 200321, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32968510

ABSTRACT

In this paper, we establish the explicit connection between deterministic trait-based population-level models (in the form of partial differential equations) and species-level models (in the form of ordinary differential equations), in the context of eco-evolutionary systems. In particular, by starting from a population-level model of density distributions in trait space, we derive what amounts to an extension of the typical models at the species level known from adaptive dynamics literature, to account not only for abundance and mean trait values, but also explicitly for trait variances. Thus, we arrive at an explicitly polymorphic model at the species level. The derivations make precise the relationship between the parameters in the two classes of models and allow us to distinguish between notions of fitness on the population and species levels. Through a formal stability analysis, we see that exponential growth of an eigenvalue in the trait covariance matrix corresponds to a breakdown of the underlying assumptions of the species-level model. In biological terms, this may be interpreted as a speciation event: that is, we obtain an explicit notion of the blow-up of the variance of (possibly a linear combination of) traits as a precursor to speciation. Moreover, since evolutionary volatility of the mean trait value is proportional to trait variance, this provides a notion that species at the cusp of speciation are also the most adaptive. We illustrate these concepts and considerations using a numerical simulation.

3.
Biol Lett ; 15(12): 20190633, 2019 12.
Article in English | MEDLINE | ID: mdl-31847745

ABSTRACT

Population decline is a process, yet estimates of current extinction rates often consider just the final step of that process by counting numbers of species lost in historical times. This neglects the increased extinction risk that affects a large proportion of species, and consequently underestimates the effective extinction rate. Here, we model observed trajectories through IUCN Red List extinction risk categories for all bird species globally over 28 years, and estimate an overall effective extinction rate of 2.17 × 10-4/species/year. This is six times higher than the rate of outright extinction since 1500, as a consequence of the large number of species whose status is deteriorating. We very conservatively estimate that global conservation efforts have reduced the effective extinction rate by 40%, but mostly through preventing critically endangered species from going extinct rather than by preventing species at low risk from moving into higher-risk categories. Our findings suggest that extinction risk in birds is accumulating much more than previously appreciated, but would be even greater without conservation efforts.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Animals , Biodiversity , Birds , Endangered Species
4.
PLoS One ; 12(10): e0184814, 2017.
Article in English | MEDLINE | ID: mdl-29023484

ABSTRACT

Density-dependence is a term used in ecology to describe processes such as birth and death rates that are regulated by the number of individuals in a population. Evolutionary biologists have borrowed the term to describe decreasing rates of species accumulation, suggesting that speciation and extinction rates depend on the total number of species in a clade. If this analogy with ecological density-dependence holds, diversification of clades is restricted because species compete for limited resources. We hypothesize that such competition should not only affect numbers of species, but also prevent species from being phenotypically similar. Here, we present a method to detect whether competitive interactions between species have ordered phenotypic traits on a phylogeny, assuming that competition prevents related species from having identical trait values. We use the method to analyze clades of birds and mammals, with body size as the phenotypic trait. We find no sign that competition has prevented species from having the same body size. Thus, since body size is a key ecological trait and competition does not seem to be responsible for differences in body size between species, we conclude that the diversification slowdown that is prevalent in these clades is unlikely due to the ecological interference implied by the term density dependence.


Subject(s)
Biological Evolution , Birds/classification , Ecology , Genetic Speciation , Mammals/classification , Animals , Birds/genetics , Body Size , Computer Simulation , Mammals/genetics , Phylogeny
5.
Oecologia ; 183(2): 587-595, 2017 02.
Article in English | MEDLINE | ID: mdl-27915414

ABSTRACT

In northern climates, winter is a bottleneck for many organisms. Low light and resource availability constrains individual foraging rates, potentially leading to starvation and increased mortality. Increasing input of humic substances to aquatic ecosystems causes brownification of water and hence a further decrease of light availability, which may lead to further decreased foraging rates and starvation mortality during winter. To test this hypothesis, we measured the effects of experimentally increased humic water input on consumption and survival of young-of-the-year three-spined stickleback (Gasterosteus aculeatus) over winter in large outdoor enclosures. Population densities were estimated in autumn, and the following spring and food availability and consumption were monitored over winter. As hypothesized, mortality was higher under humic (76%) as compared to ambient conditions (64%). In addition, body condition and ingested prey biomass were lower under humic conditions, even though resource availability was not lower under humic conditions. Light conditions were significantly poorer under humic conditions. This suggests that increased mortality and decreased body condition and ingested prey biomass were not due to decreased resource availability but due to decreased search efficiency in this visual feeding consumer. Increased future brownification of aquatic systems may, therefore, negatively affect both recruitment and densities of fish.


Subject(s)
Ecosystem , Fishes , Animals , Biomass , Population Density
6.
Syst Biol ; 65(1): 98-108, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26508768

ABSTRACT

Whether or not evolutionary lineages in general show a tendency to increase in body size has often been discussed. This tendency has been dubbed "Cope's rule" but because Cope never hypothesized it, we suggest renaming it after Depéret, who formulated it clearly in 1907. Depéret's rule has traditionally been studied using fossil data, but more recently a number of studies have used present-day species. While several paleontological studies of Cenozoic placental mammals have found support for increasing body size, most studies of extant placentals have failed to detect such a trend. Here, we present a method to combine information from present-day species with fossil data in a Bayesian phylogenetic framework. We apply the method to body mass estimates of a large number of extant and extinct mammal species, and find strong support for Depéret's rule. The tendency for size increase appears to be driven not by evolution toward larger size in established species, but by processes related to the emergence of new species. Our analysis shows that complementary data from extant and extinct species can greatly improve inference of macroevolutionary processes.


Subject(s)
Biological Evolution , Body Size , Mammals/anatomy & histology , Mammals/classification , Animals , Extinction, Biological , Fossils
7.
Am Nat ; 184(4): 447-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25226180

ABSTRACT

Many studies have tried to identify factors that explain differences in numbers of species between clades against the background assumption that older clades contain more species because they have had more time for diversity to accumulate. The finding in several recent studies that species richness of clades is decoupled from stem age has been interpreted as evidence for ecological limits to species richness. Here we demonstrate that the absence of a positive age-diversity relationship, or even a negative relationship, may also occur when taxa are defined based on time or some correlate of time such as genetic distance or perhaps morphological distinctness. Thus, inferring underlying processes from distributions of species across higher taxa requires caution concerning the way in which higher taxa are defined. When this definition is unclear, crown age is superior to stem age as a measure of clade age.


Subject(s)
Biological Evolution , Genetic Speciation , Biodiversity , Ecosystem , Models, Theoretical , Phylogeny , Species Specificity , Time Factors
8.
Syst Biol ; 63(2): 251-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24178942
9.
Genetics ; 194(3): 697-708, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666938

ABSTRACT

Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson-Dobzhansky-Muller (BDM) incompatibilities. We can detect these from marker transmission ratio distortion (TRD) in hybrid progenies of crosses between species or populations, where TRD is expected to result from selection against heterospecific allele combinations in hybrids. TRD may also manifest itself because of intragenomic conflicts or competition between gametes or zygotes. We studied early stage speciation in Arabidopsis lyrata by investigating patterns of TRD across the genome in F2 progenies of three reciprocal crosses between four natural populations. We found that the degree of TRD increases with genetic distance between crossed populations, but also that reciprocal progenies may differ substantially in their degree of TRD. Chromosomes AL6 and especially AL1 appear to be involved in many single- and two-locus distortions, but the location and source of TRD vary between crosses and between reciprocal progenies. We also found that the majority of single- and two-locus TRD appears to have a gametic, as opposed to zygotic, origin. Thus, while theory on BDM incompatibilities is typically illustrated with derived nuclear alleles proving incompatible in hybrid zygotes, our results suggest a prominent role for distortions emerging before zygote formation.


Subject(s)
Arabidopsis/genetics , Genetic Speciation , Models, Genetic , Reproductive Isolation , Alleles , Hybridization, Genetic
10.
Syst Biol ; 62(2): 220-30, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23103589

ABSTRACT

Speciation and extinction rates can be estimated from molecular phylogenies. Recently, a number of methods have been published showing that these rates can be estimated even if the phylogeny is incomplete, that is, if not all extant species are included. We show that the accuracy of such methods strongly depends on making the correct assumptions about how the sampling process was performed. We focus on phylogenies that are incomplete because some subclades (e.g., genera and families) are each represented as a single lineage. We show that previous methods implicitly assumed that such subclades are defined by randomly (or in an extreme deterministic way) choosing the edges that define the subclades from the complete species phylogeny. We show that these methods produce biased results if higher taxa are defined in a different manner. We introduce strict higher level phylogenies where subclades are defined so that the phylogeny is fully resolved from its origin to time x(cut), and fully unresolved thereafter, so that for all subclades, stem age > x(cut) > crown age. We present estimates of speciation and extinction rates from a phylogeny of birds in which this subclade definition was applied. However, for most higher level phylogenies in the literature, it is unclear how higher taxa were defined, but often such phylogenies can be easily transformed into strict higher level phylogenies, as we illustrate by estimating speciation and extinction rates from a near-complete but only partly resolved species-level phylogeny of mammals. The accuracy of our methods is verified using simulations.


Subject(s)
Classification/methods , Extinction, Biological , Genetic Speciation , Models, Biological , Phylogeny , Animals , Birds , Computer Simulation , Mammals
11.
Evolution ; 66(9): 2969-74, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22946817

ABSTRACT

Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens.


Subject(s)
Extinction, Biological , Genetic Speciation , Hominidae/genetics , Animals , Humans , Models, Genetic
12.
BMC Evol Biol ; 11: 287, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21970590

ABSTRACT

BACKGROUND: An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). RESULTS: Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST

Subject(s)
Ecosystem , Evolution, Molecular , Genetic Variation , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , Body Size , Body Weights and Measures , Cluster Analysis , Microsatellite Repeats/genetics , Phylogeny , Principal Component Analysis , Sweden
14.
Theory Biosci ; 129(2-3): 103-11, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20514523

ABSTRACT

The theory of punctuated equilibrium, which proposes that biological species evolve rapidly when they originate rather than gradually over time, has sparked intense debate between palaeontologists and evolutionary biologists about the mode of character evolution and the importance of natural selection. Difficulty in interpreting the fossil record prevented consensus, and it remains disputed as to what extent gradual change in established species is responsible for phenotypic differences between species. Against the historical background of the concept of evolution concentrated in speciation events, we review attempts to investigate tempo and mode of evolution using present-day species since the introduction of the theory of punctuated equilibrium in 1972. We discuss advantages, disadvantages, and prospects of using neontological data, methodological advances, and the findings of some recent studies.


Subject(s)
Genetic Speciation , Models, Genetic , Animals , Ecosystem , Extinction, Biological , Fossils , Gene Expression Profiling , Genetics, Population , Phylogeny , Plants , Population Density , Selection, Genetic/physiology , Time Factors
15.
Am Nat ; 174(6): 912-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19860548

ABSTRACT

Recently, it has been shown with large data sets of extinct mammals that large-bodied lineages experienced higher speciation and extinction rates; with extant mammals, it has been shown that body size evolution is accelerated during speciation. Therefore, it is interesting to investigate whether mammalian body size evolution is faster in large-bodied lineages. Phylogenetic analysis assuming size-independent speciation rates suggested that the rate of body size evolution increases with body size, whereas size differences in recent sister species (that are little affected by species turnover) appear to be independent of size. This supports the hypothesis that high rates of species turnover increase the rate at which interspecific differences accumulate in large-bodied clades, whereas rates of evolution in single lineages are approximately size invariant. Similarly, these findings support the notion that mammalian body size evolution is indeed concentrated in speciation events.


Subject(s)
Body Size , Genetic Speciation , Mammals/anatomy & histology , Algorithms , Animals , Fossils , Mammals/physiology , Models, Biological , Phylogeny , Selection, Genetic
17.
Evolution ; 62(11): 2718-26, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18752617

ABSTRACT

Algorithms are presented to simultaneously estimate probabilities of speciation and extinction, rates of anagenetic and cladogenetic phenotypic evolution, as well as ancestral character states, from a complete ultrametric species-level phylogeny with dates assigned to all bifurcations and one or more phenotypes in three or more extant species, using Metropolis-Hastings Markov Chain Monte Carlo sampling. The algorithms also estimate missing phenotypes of extant species and numbers of speciation events that occurred on all branches of the phylogeny. The algorithms are discussed and their performance is evaluated using simulated data. That evaluation shows that precise estimation of rates of evolution of one or a few phenotypes requires large phylogenies. Estimation accuracy improves with the number of species on the phylogeny.


Subject(s)
Evolution, Molecular , Extinction, Biological , Phylogeny , Bayes Theorem , Kinetics , Phenotype , Reproducibility of Results , Time
18.
Proc Biol Sci ; 275(1648): 2195-9, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18595835

ABSTRACT

Is gradual microevolutionary change within species simultaneously the source of macroevolutionary differentiation between species? Since its first publication, Darwin's original idea that phenotypic differences between species develop gradually over time, as the accumulation of small selection-induced changes in successive generations has been challenged by palaeontologists claiming that, instead, new species quickly acquire their phenotypes to remain virtually unchanged until going extinct again. This controversy, widely known as the 'punctuated equilibrium' debate, remained unresolved, largely owing to the difficulty of distinguishing biological species from fossil remains. We analysed body masses of 2143 existing mammal species on a phylogeny comprising 4510 (i.e. nearly all) extant species to estimate rates of gradual (anagenetic) and speciational (cladogenetic) evolution. Our Bayesian estimates from mammals as well as separate sub-clades such as primates and carnivores suggest that gradual evolution is responsible for only a small part of body size variation between mammal species.


Subject(s)
Biological Evolution , Body Size/physiology , Genetic Speciation , Mammals/anatomy & histology , Algorithms , Animals , Bayes Theorem , Genetic Variation , Mammals/physiology , Phylogeny
19.
Evolution ; 62(9): 2441-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18616567

ABSTRACT

Speciation and extinction probabilities can be estimated from molecular phylogenies of extant species that are complete at the species level. Because only a fraction of published phylogenies is complete at the species level, methods have been developed to estimate speciation and extinction probabilities also from incomplete phylogenies. However, due to different estimation techniques, estimates from complete and incomplete phylogenies are difficult to compare statistically. Here I show with some examples how existing likelihood functions can be used to obtain Bayesian estimates of speciation and extinction probabilities, and how this approach is applied to both complete and incomplete phylogenies.


Subject(s)
Bayes Theorem , Extinction, Biological , Genetic Speciation , Phylogeny
20.
BMC Biol ; 5: 49, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17976232

ABSTRACT

BACKGROUND: Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR) hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that "enemy-free space" provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities. RESULTS: We found that evolutionary shifts in host plant use and habitat have led to dramatic prunings of parasitoid communities, and that changes in gall phenotype can provide "enemy-free morphospace" for millions of years even in the absence of host plant shifts. Some parasites have nevertheless managed to colonize recently-evolved gall types, and this has apparently led to adaptive speciation in several enemy groups. However, having fewer enemies does not in itself increase speciation probabilities in individual sawfly lineages, partly because the high diversity of the enemy community facilitates compensatory attack by remaining parasite taxa. CONCLUSION: Taken together, our results indicate that niche-dependent parasitism is a major force promoting ecological divergence in herbivorous insects, and that prey divergence can cause speciation in parasite lineages. However, the results also show that the EAR hypothesis is too simplistic for species-rich food webs: instead, diversification seems to be spurred by a continuous stepwise process, in which ecological and phenotypic shifts in prey lineages are followed by a lagged evolutionary response by some of the associated enemies.


Subject(s)
Ecosystem , Food Chain , Genetic Speciation , Host-Parasite Interactions , Insecta/genetics , Plants/genetics , Animals , Biological Evolution , Hymenoptera/genetics , Phylogeny , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...