Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biodes Res ; 5: 0003, 2023.
Article in English | MEDLINE | ID: mdl-37849458

ABSTRACT

We previously demonstrated that we could hijack the fungal pheromone signaling pathway to provide a living yeast biosensor where peptide biomarkers were recognized by G-protein-coupled receptors and engineered to transcribe a readout. Here, we demonstrated that the protease could be reintroduced to the biosensor to provide a simple mechanism for distinguishing single-amino-acid changes in peptide ligands that, otherwise, would likely be difficult to detect using binding-based assays. We characterized the dose-response curves for five fungal pheromone G-protein-coupled receptors, peptides, and proteases-Saccharomyces cerevisiae, Candida albicans, Schizosaccharomyces pombe, Schizosaccharomyces octosporus, and Schizosaccharomyces japonicus. Alanine scanning was carried out for the most selective of these-S. cerevisiae and C. albicans-with and without the protease. Two peptide variants were discovered, which showed diminished cleavage by the protease (CaPep2A and CaPep2A13A). Those peptides were then distinguished by utilizing the biosensor strains with and without the protease, which selectively cleaved and altered the apparent concentration of peptide required for half-maximal activation for 2 peptides-CaPep and CaPep13A, respectively-by more than one order of magnitude. These results support the hypothesis that the living yeast biosensor with a sequence-specific protease can translate single-amino-acid changes into more than one order of magnitude apparent shift in the concentration of peptide required for half-maximal activation. With further engineering by computational modeling and directed evolution, the biosensor could likely distinguish a wide variety of peptide sequences beyond the alanine scanning carried out here. In the future, we envision incorporating proteases into our living yeast biosensor for use as a point of care diagnostic, a scalable communication language, and other applications.

2.
STAR Protoc ; 4(2): 102293, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37182203

ABSTRACT

The Size-Exclusion Chromatography Analysis Toolkit (SECAT) elucidates protein complex dynamics using co-fractionated bottom-up mass spectrometry (CF-MS) data. Here, we present a protocol for the network-centric analysis and interpretation of CF-MS profiles using SECAT. We describe the technical steps for preprocessing, scoring, semi-supervised machine learning, and quantification, including common pitfalls and their solutions. We further provide guidance for data export, visualization, and the interpretation of SECAT results to discover dysregulated proteins and interactions, supporting new hypotheses and biological insights. For complete details on the use and execution of this protocol, please refer to Rosenberger et al. (2020).1.

3.
bioRxiv ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36711903

ABSTRACT

The majority of cellular proteins interact with at least one partner or assemble into molecular-complexes to exert their function. This network of protein-protein interactions (PPIs) and the composition of macromolecular machines differ between cell types and physiological conditions. Therefore, characterizing PPI networks and their dynamic changes is vital for discovering novel biological functions and underlying mechanisms of cellular processes. However, producing an in-depth, global snapshot of PPIs from a given specimen requires measuring tens to thousands of LC-MS/MS runs. Consequently, while recent works made seminal contributions by mapping PPIs at great depth, almost all focused on just 1-2 conditions, generating comprehensive but mostly static PPI networks. In this study we report the development of SEC-TMT, a method that enables identifying and measuring PPIs in a quantitative manner from only 4-8 LC-MS/MS runs per biological sample. This was accomplished by incorporating tandem mass tag (TMT) multiplexing with a size exclusion chromatography mass spectrometry (SEC-MS) work-flow. SEC-TMT reduces measurement time by an order of magnitude while maintaining resolution and coverage of thousands of cellular interactions, equivalent to the gold standard in the field. We show that SEC-TMT provides benefits for conducting differential analyses to measure changes in the PPI network between conditions. This development makes it feasible to study dynamic systems at scale and holds the potential to drive more rapid discoveries of PPI impact on cellular processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...