Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2307982121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593084

ABSTRACT

A major aspiration of investors is to better forecast stock performance. Interestingly, emerging "neuroforecasting" research suggests that brain activity associated with anticipatory reward relates to market behavior and population-wide preferences, including stock price dynamics. In this study, we extend these findings to professional investors processing comprehensive real-world information on stock investment options while making predictions of long-term stock performance. Using functional MRI, we sampled investors' neural responses to investment cases and assessed whether these responses relate to future performance on the stock market. We found that our sample of investors could not successfully predict future market performance of the investment cases, confirming that stated preferences do not predict the market. Stock metrics of the investment cases were not predictive of future stock performance either. However, as investors processed case information, nucleus accumbens (NAcc) activity was higher for investment cases that ended up overperforming in the market. These findings remained robust, even when controlling for stock metrics and investors' predictions made in the scanner. Cross-validated prediction analysis indicated that NAcc activity could significantly predict future stock performance out-of-sample above chance. Our findings resonate with recent neuroforecasting studies and suggest that brain activity of professional investors may help in forecasting future stock performance.


Subject(s)
Nervous System Physiological Phenomena , Nucleus Accumbens , Humans , Forecasting , Investments
2.
Sci Rep ; 13(1): 3984, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894617

ABSTRACT

In daily life we regularly must decide whether to act dishonestly for personal gain or to be honest and maintain a positive image of ourselves. While evidence suggests that acute stress influences moral decisions, it is unclear whether stress increases or decreases immoral behavior. Here, we hypothesize that stress, through its effects on cognitive control, has different effects on moral decision making for different individuals, depending on their moral default. We test this hypothesis by combining a task which allows for inconspicuously measuring spontaneous cheating with a well-established stress induction task. Our findings confirm our hypothesis, revealing that effects of stress on dishonesty are not uniform, but instead depend on the individual: for those who are relatively dishonest, stress increases dishonesty, whereas for participants who are relatively honest stress makes them more honest. These findings go a long way in resolving the conflicting findings in the literature on the effects of stress on moral decisions, suggesting that stress affects dishonesty differently for different individuals, depending on their moral default.


Subject(s)
Decision Making , Individuality , Humans , Morals , Deception
3.
Neuroimage ; 271: 119990, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36878456

ABSTRACT

The processing of reinforcers and punishers is crucial to adapt to an ever changing environment and its dysregulation is prevalent in mental health and substance use disorders. While many human brain measures related to reward have been based on activity in individual brain regions, recent studies indicate that many affective and motivational processes are encoded in distributed systems that span multiple regions. Consequently, decoding these processes using individual regions yields small effect sizes and limited reliability, whereas predictive models based on distributed patterns yield larger effect sizes and excellent reliability. To create such a predictive model for the processes of rewards and losses, termed the Brain Reward Signature (BRS), we trained a model to predict the signed magnitude of monetary rewards on the Monetary Incentive Delay task (MID; N = 39) and achieved a highly significant decoding performance (92% for decoding rewards versus losses). We subsequently demonstrate the generalizability of our signature on another version of the MID in a different sample (92% decoding accuracy; N = 12) and on a gambling task from a large sample (73% decoding accuracy, N = 1084). We further provided preliminary data to characterize the specificity of the signature by illustrating that the signature map generates estimates that significantly differ between rewarding and negative feedback (92% decoding accuracy) but do not differ for conditions that differ in disgust rather than reward in a novel Disgust-Delay Task (N = 39). Finally, we show that passively viewing positive and negatively valenced facial expressions loads positively on our signature, in line with previous studies on morbid curiosity. We thus created a BRS that can accurately predict brain responses to rewards and losses in active decision making tasks, and that possibly relates to information seeking in passive observational tasks.


Subject(s)
Brain , Gambling , Humans , Reproducibility of Results , Brain/physiology , Reward , Motivation , Gambling/psychology , Magnetic Resonance Imaging , Brain Mapping
4.
Sci Rep ; 12(1): 18425, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319653

ABSTRACT

Numerous studies demonstrate that moment-to-moment neural variability is behaviorally relevant and beneficial for tasks and behaviors requiring cognitive flexibility. However, it remains unclear whether the positive effect of neural variability also holds for cognitive persistence. Moreover, different brain variability measures have been used in previous studies, yet comparisons between them are lacking. In the current study, we examined the association between resting-state BOLD signal variability and two metacontrol policies (i.e., persistence vs. flexibility). Brain variability was estimated from resting-state fMRI (rsfMRI) data using two different approaches (i.e., Standard Deviation (SD), and Mean Square Successive Difference (MSSD)) and metacontrol biases were assessed by three metacontrol-sensitive tasks. Results showed that brain variability measured by SD and MSSD was highly positively related. Critically, higher variability measured by MSSD in the attention network, parietal and frontal network, frontal and ACC network, parietal and motor network, and higher variability measured by SD in the parietal and motor network, parietal and frontal network were associated with reduced persistence (or greater flexibility) of metacontrol (i.e., larger Stroop effect or worse RAT performance). These results show that the beneficial effect of brain signal variability on cognitive control depends on the metacontrol states involved. Our study highlights the importance of temporal variability of rsfMRI activity in understanding the neural underpinnings of cognitive control.


Subject(s)
Brain Mapping , Individuality , Brain Mapping/methods , Brain , Magnetic Resonance Imaging/methods , Stroop Test
5.
Trends Cogn Sci ; 26(9): 796-808, 2022 09.
Article in English | MEDLINE | ID: mdl-35840475

ABSTRACT

Dishonesty is ubiquitous and imposes substantial financial and social burdens on society. Intuitively, dishonesty results from a failure of willpower to control selfish behavior. However, recent research suggests that the role of cognitive control in dishonesty is more complex. We review evidence that cognitive control is not needed to be honest or dishonest per se, but that it depends on individual differences in what we call one's 'moral default': for those who are prone to dishonesty, cognitive control indeed aids in being honest, but for those who are already generally honest, cognitive control may help them cheat to occasionally profit from small acts of dishonesty. Thus, the role of cognitive control in (dis)honesty is to override the moral default.


Subject(s)
Deception , Morals , Cognition , Humans , Individuality
6.
Neuroimage ; 246: 118761, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34861396

ABSTRACT

Measurement of the determinants of socially undesirable behaviors, such as dishonesty, are complicated and obscured by social desirability biases. To circumvent these biases, we used connectome-based predictive modeling (CPM) on resting state functional connectivity patterns in combination with a novel task which inconspicuously measures voluntary cheating to gain access to the neurocognitive determinants of (dis)honesty. Specifically, we investigated whether task-independent neural patterns within the brain at rest could be used to predict a propensity for (dis)honest behavior. Our analyses revealed that functional connectivity, especially between brain networks linked to self-referential thinking (vmPFC, temporal poles, and PCC) and reward processing (caudate nucleus), reliably correlates, in an independent sample, with participants' propensity to cheat. Participants who cheated the most also scored highest on several self-report measures of impulsivity which underscores the generalizability of our results. Notably, when comparing neural and self-report measures, the neural measures were found to be more important in predicting cheating propensity.


Subject(s)
Cerebral Cortex/physiology , Connectome , Deception , Impulsive Behavior/physiology , Individuality , Magnetic Resonance Imaging , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Machine Learning , Male , Rest/physiology , Young Adult
7.
Behav Brain Sci ; 44: e136, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34588079

ABSTRACT

We describe a neural monitor of environmental and physiological resources that informs effort expenditure. Depending on resources and environmental stability, serotonergic and dopaminergic neuromodulations favor different behavioral controls that are organized in corticostriatal loops. This broader perspective produces some suggestions and questions that may not be covered by the foraging approach to vigor of Shadmehr and Ahmed (2020).


Subject(s)
Dopamine , Serotonin , Humans
8.
J Neurosci ; 41(42): 8815-8825, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34518305

ABSTRACT

Cognitive control is crucially involved in making (dis)honest decisions. However, the precise nature of this role has been hotly debated. Is honesty an intuitive response, or is will power needed to override an intuitive inclination to cheat? A reconciliation of these conflicting views proposes that cognitive control enables dishonest participants to be honest, whereas it allows those who are generally honest to cheat. Thus, cognitive control does not promote (dis)honesty per se; it depends on one's moral default. In the present study, we tested this proposal using electroencephalograms in humans (males and females) in combination with an independent localizer (Stroop task) to mitigate the problem of reverse inference. Our analysis revealed that the neural signature evoked by cognitive control demands in the Stroop task can be used to estimate (dis)honest choices in an independent cheating task, providing converging evidence that cognitive control can indeed help honest participants to cheat, whereas it facilitates honesty for cheaters.SIGNIFICANCE STATEMENT Dishonesty causes enormous economic losses. To target dishonesty with interventions, a rigorous understanding of the underlying cognitive mechanisms is required. A recent study found that cognitive control enables honest participants to cheat, whereas it helps cheaters to be honest. However, it is evident that a single study does not suffice as support for a novel hypothesis. Therefore, we tested the replicability of this finding using a different modality (EEG instead of fMRI) together with an independent localizer task to avoid reverse inference. We find that the same neural signature evoked by cognitive control demands in the localizer task can be used to estimate (dis)honesty in an independent cheating task, establishing converging evidence that the effect of cognitive control indeed depends on a person's moral default.


Subject(s)
Cognition/physiology , Deception , Decision Making/physiology , Morals , Motivation/physiology , Stroop Test , Adolescent , Adult , Electroencephalography/methods , Female , Humans , Male , Photic Stimulation/methods , Young Adult
9.
Front Neurosci ; 15: 610429, 2021.
Article in English | MEDLINE | ID: mdl-33633534

ABSTRACT

There is a long-standing debate regarding the cognitive nature of (dis)honesty: Is honesty an automatic response or does it require willpower in the form of cognitive control in order to override an automatic dishonest response. In a recent study (Speer et al., 2020), we proposed a reconciliation of these opposing views by showing that activity in areas associated with cognitive control, particularly the inferior frontal gyrus (IFG), helped dishonest participants to be honest, whereas it enabled cheating for honest participants. These findings suggest that cognitive control is not needed to be honest or dishonest per se but that it depends on an individual's moral default. However, while our findings provided insights into the role of cognitive control in overriding a moral default, they did not reveal whether overriding honest default behavior (non-habitual dishonesty) is the same as overriding dishonest default behavior (non-habitual honesty) at the neural level. This speaks to the question as to whether cognitive control mechanisms are domain-general or may be context specific. To address this, we applied multivariate pattern analysis to compare neural patterns of non-habitual honesty to non-habitual dishonesty. We found that these choices are differently encoded in the IFG, suggesting that engaging cognitive control to follow the norm (that cheating is wrong) fundamentally differs from applying control to violate this norm.

10.
Front Neurosci ; 14: 736, 2020.
Article in English | MEDLINE | ID: mdl-32765214

ABSTRACT

Abundant research has established the important role of ad-evoked feelings on consumers' reaction to advertising. However, measurement of feelings through explicit self-report is not without its limitations. The current study adds to previous work by showing a sophisticated way of first estimating how arousal is represented in the brain via an independent task (using EEG), and thereafter using this representation to measure arousal in response to advertisements. We then estimate the relationship between the identified process (arousal) and external measures of ad effectiveness (as measured by notability and attitude toward the ad). The results show that the neural measure of arousal is positively associated with notability of ads in the population at large, but may be negatively associated with attitude toward these ads. The implications for the application of EEG in ad testing and for understanding the relationship between arousal and effective advertising are discussed.

11.
Proc Natl Acad Sci U S A ; 117(32): 19080-19091, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32747572

ABSTRACT

Every day, we are faced with the conflict between the temptation to cheat for financial gains and maintaining a positive image of ourselves as being a "good person." While it has been proposed that cognitive control is needed to mediate this conflict between reward and our moral self-image, the exact role of cognitive control in (dis)honesty remains elusive. Here we identify this role, by investigating the neural mechanism underlying cheating. We developed a task which allows for inconspicuously measuring spontaneous cheating on a trial-by-trial basis in the MRI scanner. We found that activity in the nucleus accumbens promotes cheating, particularly for individuals who cheat a lot, while a network consisting of posterior cingulate cortex, temporoparietal junction, and medial prefrontal cortex promotes honesty, particularly in individuals who are generally honest. Finally, activity in areas associated with cognitive control (anterior cingulate cortex and inferior frontal gyrus) helped dishonest participants to be honest, whereas it enabled cheating for honest participants. Thus, our results suggest that cognitive control is not needed to be honest or dishonest per se but that it depends on an individual's moral default.


Subject(s)
Cognition , Deception , Adolescent , Adult , Brain Mapping , Decision Making , Female , Humans , Magnetic Resonance Imaging , Male , Morals , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Reward , Young Adult
12.
Front Neurosci ; 14: 502, 2020.
Article in English | MEDLINE | ID: mdl-32581677

ABSTRACT

When asked to select several options at once, people tend to choose a greater diversity of items than when they are asked to make these selections one at a time. Using functional magnetic resonance imaging (fMRI), we provide novel insight into the neural mechanisms underlying diversification in portfolio choices. We found that, as participants made multiple selections from a menu of different options, the current state of their choice portfolio (i.e., the previously selected options) dynamically modulates activity in the neural valuation system in response to the options under evaluation. More specifically, we found that activity in the ventral striatum (VS) decreases when the option has already been selected ("satiation"), while activity in the ventromedial prefrontal cortex increases when other options have previously been selected ("novelty-seeking"). Our findings reveal two processes that drive diversification in portfolio choices, and suggest that the context of previous selections strongly impacts how the brain evaluates current choice options.

13.
Neuroimage ; 216: 116618, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32036021

ABSTRACT

This study explored the feasibility of using shared neural patterns from brief affective episodes (viewing affective pictures) to decode extended, dynamic affective sequences in a naturalistic experience (watching movie-trailers). Twenty-eight participants viewed pictures from the International Affective Picture System (IAPS) and, in a separate session, watched various movie-trailers. We first located voxels at bilateral occipital cortex (LOC) responsive to affective picture categories by GLM analysis, then performed between-subject hyperalignment on the LOC voxels based on their responses during movie-trailer watching. After hyperalignment, we trained between-subject machine learning classifiers on the affective pictures, and used the classifiers to decode affective states of an out-of-sample participant both during picture viewing and during movie-trailer watching. Within participants, neural classifiers identified valence and arousal categories of pictures, and tracked self-reported valence and arousal during video watching. In aggregate, neural classifiers produced valence and arousal time series that tracked the dynamic ratings of the movie-trailers obtained from a separate sample. Our findings provide further support for the possibility of using pre-trained neural representations to decode dynamic affective responses during a naturalistic experience.


Subject(s)
Affect/physiology , Arousal/physiology , Brain Mapping/methods , Brain/physiology , Machine Learning , Magnetic Resonance Imaging/methods , Visual Perception/physiology , Adult , Amygdala/diagnostic imaging , Amygdala/physiology , Brain/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Female , Humans , Male , Motion Pictures , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiology , Pattern Recognition, Visual/physiology , Thalamus/diagnostic imaging , Thalamus/physiology , Young Adult
14.
Neuroimage ; 197: 391-401, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31051296

ABSTRACT

The extent to which brains respond similarly to a specific stimulus, across a small group of individuals, has been previously found to predict out-of-sample aggregate preference for that stimulus. However, the location in the brain where neural similarity predicts out-of-sample preference remains unclear. In this article, we attempt to identify the neural substrates in three functional magnetic resonance imaging (fMRI) studies. Two fMRI studies (N = 40 and 20), using previously broadcasted TV commercials, show that spatiotemporal neural similarity at temporal lobe and cerebellum predict out-of-sample preference and recall. A follow-up fMRI study (N = 28) with previously unseen movie-trailers replicated the predictive effect of neural similarity. Moreover, neural similarity provided unique information on out-of-sample preference above and beyond in-sample preference. Overall, the findings suggest that neural similarity at temporal lobe and cerebellum - traditionally associated with sensory integration and emotional processing - may reflect the level of engagement with video stimuli.


Subject(s)
Cerebellum/physiology , Mental Recall/physiology , Temporal Lobe/physiology , Visual Perception/physiology , Adult , Brain Mapping , Cortical Synchronization , Female , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation
15.
PLoS One ; 14(2): e0211496, 2019.
Article in English | MEDLINE | ID: mdl-30721230

ABSTRACT

Although many studies revealed that emotions and their dynamics have a profound impact on cognition and behavior, it has proven difficult to unobtrusively measure emotions. In the current study, our objective was to distinguish different experiences elicited by audiovisual stimuli designed to evoke particularly happy, sad, fear and disgust emotions, using electroencephalography (EEG) and a multivariate approach. We show that we were able to classify these emotional experiences well above chance level. Importantly, we retained all the information (frequency and topography) present in the data. This allowed us to interpret the differences between emotional experiences in terms of component psychological processes such as attention and arousal that are known to be associated with the observed activation patterns. In addition, we illustrate how this method of classifying emotional experiences can be applied on a moment-by-moment basis in order to track dynamic changes in the emotional response over time. The application of our approach may be of value in many contexts in which the experience of a given stimulus or situation changes over time, ranging from clinical to consumption settings.


Subject(s)
Brain Mapping , Emotions/physiology , Adult , Brain/physiology , Disgust , Electroencephalography , Emotions/classification , Fear/physiology , Female , Happiness , Humans , Male , Multivariate Analysis , Photic Stimulation , Sadness/physiology
16.
Soc Cogn Affect Neurosci ; 14(11): 1197-1207, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31916582

ABSTRACT

A preference for fairness may originate from prosocial or strategic motivations: we may wish to improve others' well-being or avoid the repercussions of selfish behavior. Here, we used functional magnetic resonance imaging to identify neural patterns that dissociate these two motivations. Participants played both the ultimatum and dictator game (UG-DG) as proposers. Because responders can reject the offer in the UG, but not the DG, offers and neural patterns between the games should differ for strategic players but not prosocial players. Using multivariate pattern analysis, we found that the decoding accuracy of neural patterns associated with UG and DG decisions correlated significantly with differences in offers between games in regions associated with theory of mind (ToM), such as the temporoparietal junction, and cognitive control, such as the dorsolateral prefrontal cortex and inferior frontal cortex. We conclude that individual differences in prosocial behavior may be driven by variations in the degree to which self-control and ToM processes are engaged during decision-making such that the extent to which these processes are engaged is indicative of either selfish or prosocial motivations.


Subject(s)
Brain/physiology , Motivation/physiology , Adult , Brain Mapping , Decision Making , Female , Frontal Lobe/physiology , Games, Experimental , Humans , Individuality , Magnetic Resonance Imaging , Male , Multivariate Analysis , Prefrontal Cortex/physiology , Self-Control , Theory of Mind , Young Adult
17.
Int J Psychophysiol ; 119: 41-49, 2017 09.
Article in English | MEDLINE | ID: mdl-28189548

ABSTRACT

Several lines of research in animals and humans converge on the distinction between two basic large-scale brain networks of self-regulation, giving rise to predictive and reactive control systems (PARCS). Predictive (internally-driven) and reactive (externally-guided) control are supported by dorsal versus ventral corticolimbic systems, respectively. Based on extant empirical evidence, we demonstrate how the PARCS produce frontal laterality effects in emotion and motivation. In addition, we explain how this framework gives rise to individual differences in appraising and coping with challenges. PARCS theory integrates separate fields of research, such as research on the motivational correlates of affect, EEG frontal alpha power asymmetry and implicit affective priming effects on cardiovascular indicators of effort during cognitive task performance. Across these different paradigms, converging evidence points to a qualitative motivational division between, on the one hand, angry and happy emotions, and, on the other hand, sad and fearful emotions. PARCS suggests that those two pairs of emotions are associated with predictive and reactive control, respectively. PARCS theory may thus generate important new insights on the motivational and emotional dynamics that drive autonomic and homeostatic control processes.


Subject(s)
Adaptation, Psychological/physiology , Brain Waves/physiology , Emotions/physiology , Executive Function/physiology , Functional Laterality/physiology , Motivation/physiology , Nerve Net/physiology , Humans
18.
Behav Brain Sci ; 38: e116, 2015.
Article in English | MEDLINE | ID: mdl-26785719

ABSTRACT

We propose that the fundamental mechanism underlying resilience is the integration of novel or negative experiences into internal schemata. This process requires a switch from reactive to predictive control modes, from the brain's salience network to the default mode network. Reappraisal, among other mechanisms, is suggested to facilitate this process.


Subject(s)
Brain Mapping , Brain , Humans
19.
Neuroimage ; 103: 355-363, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25281799

ABSTRACT

Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the evaluation of gains and losses, and demonstrating how these responses can impact subsequent preference for either risky or safe choice options. Participants performed a task while undergoing fMRI in which they experienced both gains and losses. Immediately following a gain or loss, participants decided to either play or pass on a "double-or-quits" gamble. The outcome of the gamble could either double or eliminate their initial gain (from the time-estimation task) or redeem or double their initial loss. If they chose not to play this gamble, they retained the initial gain or loss. We demonstrate a shift in risk-taking preferences for identical sets of gambles as a function of previous gains or losses, with participants showing a greater preference towards riskier decisions in the context of a prior loss. An interaction between evaluating gain/loss contexts and subsequent behavioral risk pattern revealed an increased BOLD response in the ventromedial prefrontal cortex (vmPFC), with stronger responses for both gambling in a loss context and safety in a gain context. This suggests that the vmPFC is responsible for integrating these contextual effects, with these processes impacting on subsequent risky choice.


Subject(s)
Decision Making/physiology , Prefrontal Cortex/physiology , Risk-Taking , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Young Adult
20.
Front Psychol ; 5: 429, 2014.
Article in English | MEDLINE | ID: mdl-24904455

ABSTRACT

In the present paper, we will apply the predictive and reactive control systems (PARCS) theory as a framework that integrates competing theories of neural substrates of awareness by describing the "default mode network" (DMN) and anterior insula (AI) as parts of two different behavioral and homeostatic control systems. The DMN, a network that becomes active at rest when there is no external stimulation or task to perform, has been implicated in self-reflective awareness and prospection. By contrast, the AI is associated with awareness and task-related attention. This has led to competing theories stressing the role of the DMN in self-awareness vs. the role of interoceptive and emotional information integration in the AI in awareness of the emotional moment. In PARCS, the respective functions of the DMN and AI in a specific control system explains their association with different qualities of awareness, and how mental states can shift from one state (e.g., prospective self-reflection) to the other (e.g., awareness of the emotional moment) depending on the relative dominance of control systems. These shifts between reactive and predictive control are part of processes that enable the intake of novel information, integration of this novel information within existing knowledge structures, and the creation of a continuous personal context in which novel information can be integrated and understood. As such, PARCS can explain key characteristics of mental states, such as their temporal and spatial focus (e.g., a focus on the here and now vs. the future; a first person vs. a third person perspective). PARCS further relates mental states to brain states and functions, such as activation of the DMN or hemispheric asymmetry in frontal cortical functions. Together, PARCS deepens the understanding of a broad range of mental states, including mindfulness, mind wandering, rumination, autobiographical memory, imagery, and the experience of self.

SELECTION OF CITATIONS
SEARCH DETAIL
...