Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Int Conf Robot Autom ; 2022: 5673-5678, 2022 May.
Article in English | MEDLINE | ID: mdl-36061070

ABSTRACT

Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66° and 2.64° for the knee and ankle, respectively. The knee and ankle joints provided on average 0.39 J/kg and 0.21 J/kg per stride, compared to the normative averages of 0.34 J/kg and 0.21 J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.

2.
IEEE Trans Med Robot Bionics ; 4(3): 840-851, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35991942

ABSTRACT

Although emerging powered prostheses can enable people with lower-limb amputation to walk and climb stairs over different task conditions (e.g., speeds and inclines), the control architecture typically uses a finite-state machine to switch between activity-specific controllers. Because these controllers focus on steady-state locomotion, powered prostheses abruptly switch between controllers during gait transitions rather than continuously adjusting leg biomechanics in synchrony with the users. This paper introduces a new framework for powered prosthesis control by modeling the lower-limb joint kinematics over a continuum of variable-incline walking and stair climbing, including steady-state and transitional gaits. Steady-state models for walking and stair climbing represent joint kinematics as continuous functions of gait phase, forward speed, and incline. Transition models interpolate kinematics as convex combinations of the two steady-state models, with an additional term to account for kinematics that fall outside their convex hull. The coefficients of this convex combination denote the similarity of the transitional kinematics to each steady-state mode, providing insight into how able-bodied individuals continuously transition between ambulation modes. Cross-validation demonstrates that the model predictions of untrained kinematics have errors within the range of physiological variability for all joints. Simulation results demonstrate the model's robustness to incline estimation and mode classification errors.

3.
Sci Data ; 8(1): 282, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711856

ABSTRACT

Human locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


Subject(s)
Gait , Lower Extremity/physiology , Running/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Locomotion/physiology , Male , Middle Aged , Sitting Position , Stair Climbing/physiology , Standing Position , Young Adult
4.
Article in English | MEDLINE | ID: mdl-34428147

ABSTRACT

Current supervised learning or deep learning-based activity recognition classifiers can achieve high accuracy in recognizing locomotion activities. Most available techniques use a high-dimensional space of features, e.g., combinations of EMG, kinematics and kinetics, and transformations over those signals. The associated classification rules are therefore complex; the machine tries to understand the human, but the human does not understand the machine. This paper presents an activity recognition system that uses signals from a thigh-mounted IMU and a force sensitive resistor to classify transitions between sitting, walking, stair ascending, and stair descending. The system uses the thigh's orientation and velocity with foot contact information at specific moments within a given activity as the features to classify transitions to other activities. We call these Instantaneous Characteristic Features (ICFs). Because these ICFs are biomechanically intuitive, they are easy for the user to understand and thus control the activity transitions of wearable robots. We assessed our classification algorithm offline using an existing dataset with 10 able-bodied subjects and online with another 10 able-bodied subjects wearing a real-time system. The offline study analyzed the effect of subject-dependency and ramp inclinations. The real-time classification accuracy was evaluated before and after training the subjects on the ICFs. The real-time system achieved overall pre-subject-training and post-subject-training error rates of 0.59% ± 0.24% and 0.56% ± 0.20%, respectively. We also evaluated the feasibility of our ICFs for amputee ambulation by analyzing a public dataset with the open-source bionic leg. The simplicity of these classification rules demonstrates a new paradigm for activity recognition where the human can understand the machine and vice-versa.


Subject(s)
Amputees , Thigh , Algorithms , Biomechanical Phenomena , Humans , Locomotion , Walking
5.
Control Technol Appl ; 2021: 627-633, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35224560

ABSTRACT

This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.

6.
IEEE ASME Trans Mechatron ; 24(3): 1334-1345, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31649476

ABSTRACT

Compared to rigid actuators, series elastic actuators (SEAs) offer a potential reduction of motor energy consumption and peak power, though these benefits are highly dependent on the design of the torque-elongation profile of the elastic element. In the case of linear springs, natural dynamics is a traditional method for this design, but it has two major limitations-arbitrary load trajectories are difficult or impossible to analyze and it does not consider actuator constraints. Parametric optimization is also a popular design method that addresses these limitations, but solutions are only optimal within the space of the parameters. To overcome these limitations, we propose a nonparametric convex optimization program for the design of the nonlinear elastic element that minimizes energy consumption and peak power for an arbitrary periodic reference trajectory. To obtain convexity, we introduce a convex approximation to the expression of peak power; energy consumption is shown to be convex without approximation. The combination of peak power and energy consumption in the cost function leads to a multiobjective convex optimization framework that comprises the main contribution of this paper. As a case study, we recover the elongation-torque profile of a cubic spring, given its natural oscillation as the reference load. We then design nonlinear SEAs for an ankle prosthesis that minimize energy consumption and peak power for different trajectories and extend the range of achievable tasks when subject to actuator constraints.

SELECTION OF CITATIONS
SEARCH DETAIL
...