Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 73(2): 355-61, 2016.
Article in English | MEDLINE | ID: mdl-26819391

ABSTRACT

The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L(-1) of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m(3) biogas kg(-1) VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m(3) biogas kg(-1) VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m(3) biogas kg(-1) VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m(3) biogas yield kg(-1) VSadded was produced using an organic loading rate of 2 kg VS m(-3) d(-1) and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.


Subject(s)
Biofuels , Bioreactors , Eichhornia/metabolism , Garbage , Methane/isolation & purification , Ammonia/analysis , Anaerobiosis , Bacteria, Anaerobic/metabolism , Biological Oxygen Demand Analysis , Fatty Acids, Volatile/analysis , Fruit/metabolism , Methane/metabolism , Nitrogen/isolation & purification , Vegetables/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...