Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14895, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942761

ABSTRACT

Older adults (OAs) are typically slower and/or less accurate in forming perceptual choices relative to younger adults. Despite perceptual deficits, OAs gain from integrating information across senses, yielding multisensory benefits. However, the cognitive processes underlying these seemingly discrepant ageing effects remain unclear. To address this knowledge gap, 212 participants (18-90 years old) performed an online object categorisation paradigm, whereby age-related differences in Reaction Times (RTs) and choice accuracy between audiovisual (AV), visual (V), and auditory (A) conditions could be assessed. Whereas OAs were slower and less accurate across sensory conditions, they exhibited greater RT decreases between AV and V conditions, showing a larger multisensory benefit towards decisional speed. Hierarchical Drift Diffusion Modelling (HDDM) was fitted to participants' behaviour to probe age-related impacts on the latent multisensory decision formation processes. For OAs, HDDM demonstrated slower evidence accumulation rates across sensory conditions coupled with increased response caution for AV trials of higher difficulty. Notably, for trials of lower difficulty we found multisensory benefits in evidence accumulation that increased with age, but not for trials of higher difficulty, in which increased response caution was instead evident. Together, our findings reconcile age-related impacts on multisensory decision-making, indicating greater multisensory evidence accumulation benefits with age underlying enhanced decisional speed.


Subject(s)
Aging , Auditory Perception , Decision Making , Reaction Time , Visual Perception , Humans , Aged , Adult , Middle Aged , Female , Male , Aged, 80 and over , Decision Making/physiology , Adolescent , Reaction Time/physiology , Young Adult , Auditory Perception/physiology , Aging/physiology , Aging/psychology , Visual Perception/physiology , Photic Stimulation , Acoustic Stimulation
2.
Neuroimage ; 247: 118841, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34952232

ABSTRACT

When exposed to complementary features of information across sensory modalities, our brains formulate cross-modal associations between features of stimuli presented separately to multiple modalities. For example, auditory pitch-visual size associations map high-pitch tones with small-size visual objects, and low-pitch tones with large-size visual objects. Preferential, or congruent, cross-modal associations have been shown to affect behavioural performance, i.e. choice accuracy and reaction time (RT) across multisensory decision-making paradigms. However, the neural mechanisms underpinning such influences in perceptual decision formation remain unclear. Here, we sought to identify when perceptual improvements from associative congruency emerge in the brain during decision formation. In particular, we asked whether such improvements represent 'early' sensory processing benefits, or 'late' post-sensory changes in decision dynamics. Using a modified version of the Implicit Association Test (IAT), coupled with electroencephalography (EEG), we measured the neural activity underlying the effect of auditory stimulus-driven pitch-size associations on perceptual decision formation. Behavioural results showed that participants responded significantly faster during trials when auditory pitch was congruent, rather than incongruent, with its associative visual size counterpart. We used multivariate Linear Discriminant Analysis (LDA) to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance. We found an 'Early' component (∼100-110 ms post-stimulus onset) coinciding with the time of maximal discrimination of the auditory stimuli), and a 'Late' component (∼330-340 ms post-stimulus onset) underlying IAT performance. To characterise the functional role of these components in decision formation, we incorporated a neurally-informed Hierarchical Drift Diffusion Model (HDDM), revealing that the Late component decreases response caution, requiring less sensory evidence to be accumulated, whereas the Early component increased the duration of sensory-encoding processes for incongruent trials. Overall, our results provide a mechanistic insight into the contribution of 'early' sensory processing, as well as 'late' post-sensory neural representations of associative congruency to perceptual decision formation.


Subject(s)
Decision Making/physiology , Electroencephalography , Acoustic Stimulation , Adult , Discriminant Analysis , Female , Healthy Volunteers , Humans , Male , Photic Stimulation , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...