Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 26(7): 1114-1124, 2020 07.
Article in English | MEDLINE | ID: mdl-32483360

ABSTRACT

In many areas of oncology, we lack sensitive tools to track low-burden disease. Although cell-free DNA (cfDNA) shows promise in detecting cancer mutations, we found that the combination of low tumor fraction (TF) and limited number of DNA fragments restricts low-disease-burden monitoring through the prevailing deep targeted sequencing paradigm. We reasoned that breadth may supplant depth of sequencing to overcome the barrier of cfDNA abundance. Whole-genome sequencing (WGS) of cfDNA allowed ultra-sensitive detection, capitalizing on the cumulative signal of thousands of somatic mutations observed in solid malignancies, with TF detection sensitivity as low as 10-5. The WGS approach enabled dynamic tumor burden tracking and postoperative residual disease detection, associated with adverse outcome. Thus, we present an orthogonal framework for cfDNA cancer monitoring via genome-wide mutational integration, enabling ultra-sensitive detection, overcoming the limitation of cfDNA abundance and empowering treatment optimization in low-disease-burden oncology care.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , DNA, Neoplasm/genetics , Neoplasms/blood , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , DNA Copy Number Variations/genetics , DNA, Neoplasm/blood , Disease-Free Survival , Female , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Male , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Burden/genetics , Whole Genome Sequencing
2.
Cell Syst ; 10(1): 52-65.e7, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31668800

ABSTRACT

Cancer evolution poses a central obstacle to cure, as resistant clones expand under therapeutic selection pressures. Genome sequencing of relapsed disease can nominate genomic alterations conferring resistance but sample collection lags behind, limiting therapeutic innovation. Genome-wide screens offer a complementary approach to chart the compendium of escape genotypes, anticipating clinical resistance. We report genome-wide open reading frame (ORF) resistance screens for first- and third-generation epidermal growth factor receptor (EGFR) inhibitors and a MEK inhibitor. Using serial sampling, dose gradients, and mathematical modeling, we generate genotype-fitness maps across therapeutic contexts and identify alterations that escape therapy. Our data expose varying dose-fitness relationship across genotypes, ranging from complete dose invariance to paradoxical dose dependency where fitness increases in higher doses. We predict fitness with combination therapy and compare these estimates to genome-wide fitness maps of drug combinations, identifying genotypes where combination therapy results in unexpected inferior effectiveness. These data are applied to nominate combination optimization strategies to forestall resistant disease.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Acrylamides/administration & dosage , Acrylamides/pharmacology , Adenocarcinoma of Lung/enzymology , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/administration & dosage , Erlotinib Hydrochloride/pharmacology , Genetic Fitness , Genotype , Humans , Lung Neoplasms/enzymology , MAP Kinase Signaling System
SELECTION OF CITATIONS
SEARCH DETAIL
...