Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 35(10): e3247, 2019 10.
Article in English | MEDLINE | ID: mdl-31393090

ABSTRACT

Significant research has been conducted in the area of coronary stents/scaffolds made from resorbable metallic and polymeric biomaterials. These next-generation bioabsorbable stents have the potential to completely revolutionise the treatment of coronary artery disease. The primary advantage of resorbable devices over permanent stents is their temporary presence which, from a theoretical point of view, means only a healed coronary artery will be left behind following degradation of the stent potentially eliminating long-term clinical problems associated with permanent stents. The healing of the artery following coronary stent/scaffold implantation is crucial for the long-term safety of these devices. Computational modelling can be used to evaluate the performance of complex stent devices in silico and assist in the design and development and understanding of the next-generation resorbable stents. What is lacking in computational modelling literature is the representation of the active response of the arterial tissue in the weeks and months following stent implantation, ie, neointimal remodelling, in particular for the case of biodegradable stents. In this paper, a computational modelling framework is developed, which accounts for two major physiological stimuli responsible for neointimal remodelling and combined with a magnesium corrosion model that is capable of simulating localised pitting (realistic) stent corrosion. The framework is used to simulate different neointimal growth patterns and to explore the effects the neointimal remodelling has on the mechanical performance (scaffolding support) of the bioabsorbable magnesium stent.


Subject(s)
Magnesium/chemistry , Stents , Biocompatible Materials , Finite Element Analysis , Humans , Neointima
2.
Ann Biomed Eng ; 44(2): 341-56, 2016 02.
Article in English | MEDLINE | ID: mdl-26271520

ABSTRACT

The field of percutaneous coronary intervention has witnessed many progressions over the last few decades, more recently with the advancement of fully degradable bioabsorbable stents. Bioabsorbable materials, such as metallic alloys and aliphatic polyesters, have the potential to yield stents which provide temporary support to the blood vessel and allow native healing of the tissue to occur. Many chemical and physical reactions are reported to play a part in the degradation of such bioabsorbable materials, including, but not limited to, corrosion mechanisms for metals and the hydrolysis and crystallization of the backbone chains in polymers. In the design and analysis of bioabsorbable stents it is important to consider the effect of each aspect of the degradation on the material's in vivo performance. The development of robust computational modelling techniques which fully capture the degradation behaviour of these bioabsorbable materials is a key factor in the design of bioabsorable stents. A critical review of the current computational modelling techniques used in the design and analysis of these next generation devices is presented here, with the main accomplishments and limitations of each technique highlighted.


Subject(s)
Absorbable Implants , Computer Simulation , Models, Theoretical , Prosthesis Design , Stents , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...