Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 622-623: 849-860, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29227935

ABSTRACT

Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce4+O6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe2O3) (34-58wt%), sodalite (Na8Al6Si6O24Cl2) (4-30wt%), gibbsite (Al(OH)3) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO2) (4-8wt%), cancrinite (Na6Ca2Al6Si6O24(CO3)2) (0-5wt%), nordstrandite (Al(OH)3) (0-5wt%) and quartz (SiO2) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce2O3), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce4+, which further excludes Ce3+ minerals as relevant sources.

2.
J Hazard Mater ; 318: 433-442, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27450335

ABSTRACT

This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3-10), ionic strengths (0.001-0.1M KNO3), sorbate concentrations (10(-4), 10(-5), and 10(-6)M Cr(VI)), and sorbate/sorbent ratios (50-500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

3.
Chemosphere ; 146: 338-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26735735

ABSTRACT

Iron sulfates represent an essential sink for the toxic element arsenic in arid and semi-arid mining areas with high evaporation rates. Information about the structural incorporation of As(5+) in iron sulfates, however, remains scarce. Here we present evidence for the heterogeneous substitution of S(6+) by As(5+) in the crystal structure of rhomboclase ((H5O2)Fe(3+)(SO4)2 · 2H2O) and its dehydration product (H3O)Fe(SO4)2. Rhomboclase (Rhc) was synthesized in the presence of As(5+) with molar As/Fe ratios of 0, 0.25, 0.5, 0.75 and 1.0, resulting in As loads of 0.0, 0.93, 1.44, 1.69 and 1.87 wt.%, respectively. The unit cell parameters of Rhc increase from 9.729(6), 18.303(2), and 5.432(1) Å for a, b, and c, to 9.745(9), 18.332(5), and 5.436(8) Å when Rhc is crystallized at a molar As/Fe ratio of 1. Simultaneously, the crystallite size decreased from 304 to 176 nm. In situ dehydration of Rhc to (H3O)Fe(SO4)2, investigated by powder X-ray diffraction, shows that Rhc starts to dehydrate at 76 °C, which is completed at 86 °C. The presence of As(5+) does not impact the start or end temperatures of Rhc dehydration but does accelerate the dehydration. X-ray absorption fine structure spectroscopy (EXAFS) reveals that S(6+), in the Rhc and (H3O)Fe(SO4)2 structure, is replaced by As(5+), while the polymerization of AsO4-tetrahedra and FeO6-octahedra during the formation of (H3O)Fe(SO4)2 results in a strong distortion of the AsO4-tetrahedron.


Subject(s)
Arsenic/chemistry , Iron Compounds/chemistry , Water Pollutants, Chemical/chemistry , Mining , X-Ray Absorption Spectroscopy , X-Ray Diffraction
4.
Environ Sci Technol ; 47(16): 9140-7, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23909875

ABSTRACT

Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization. With the coupling of nanoresolution techniques and X-ray absorption spectroscopy the presence of As (up to 1.9 wt %) within the hematite crystals could be demonstrated. The incorporated As(5+) displays a short-range order similar to angelellite-like clusters, epitaxially intergrown with hematite. Angelellite (Fe4As2O11), a triclinic iron arsenate with structural relations to hematite, can epitaxially intergrow along the (210) plane with the (0001) plane of hematite. This structural composite of hematite and angelellite-like clusters represents a new immobilization mechanism and potentially long-lasting storage facility for As(5+) by iron oxides.


Subject(s)
Arsenic/chemistry , Environmental Pollutants/chemistry , Ferric Compounds/chemistry , Microscopy, Electron, Transmission , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...