Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 85: 538-47, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24973707

ABSTRACT

We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.


Subject(s)
Insect Proteins/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/agonists , Skin Physiological Phenomena/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Animals , Capillary Permeability/drug effects , Capillary Permeability/physiology , Disease Models, Animal , Ear/pathology , Ear/physiopathology , Edema , Female , Male , Mice , Microcirculation/drug effects , Microcirculation/physiology , Mustard Plant , Peroxidase/metabolism , Plant Oils , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/agonists , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/agonists , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Substance P/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasodilation/physiology
2.
Neuropeptides ; 44(5): 363-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20621353

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors (PAC1 and VPAC) have been shown in the spinal dorsal horn, dorsal root ganglia and sensory nerve terminals. Data concerning the role of PACAP in central pain transmission are controversial and we have recently published its divergent peripheral effects on nociceptive processes. The aim of the present study was to investigate acute somatic and visceral nocifensive behaviours, partial sciatic nerve ligation-evoked chronic neuropathic, as well as resiniferatoxin-induced inflammatory thermal and mechanical hyperalgesia in PACAP deficient (PACAP(-/-)) mice to elucidate its overall function in pain transmission. Neuronal activation was investigated with c-Fos immunohistochemistry. Paw lickings in the early (0-5 min) and late (20-45 min) phases of the formalin test were markedly reduced in PACAP(-/-) mice. Acetic acid-evoked abdominal contractions referring to acute visceral chemonociception was also significantly attenuated in PACAP knockout animals. In both models, the excitatory role of PACAP was supported by markedly greater c-Fos expression in the periaqueductal grey and the somatosensory cortex. In PACAP-deficient animals neuropathic mechanical hyperalgesia was absent, while c-Fos immunopositivity 20 days after the operation was significantly higher. In this chronic model, these neurons are likely to indicate the activation of secondary inhibitory pathways. Intraplantarly injected resiniferatoxin-evoked mechanical hyperalgesia involving both peripheral and central processes was decreased, but thermal allodynia mediated by only peripheral mechanisms was increased in PACAP(-/-) mice. These data clearly demonstrate an overall excitatory role of PACAP in pain transmission originating from both exteroceptive and interoceptive areas, it is also involved in central sensitization. This can be explained by the signal transduction mechanisms of its identified receptors, both PAC1 and VPAC activation leads to neuronal excitation. In contrast, it is an inhibitory mediator at the level of the peripheral sensory nerve endings and decreases their sensitization to heat with presently unknown mechanisms.


Subject(s)
Behavior, Animal/physiology , Hyperalgesia/metabolism , Neurons/metabolism , Nociceptors/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Analysis of Variance , Animals , Hot Temperature , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Immunohistochemistry , Mice , Mice, Knockout , Pain Measurement , Periaqueductal Gray/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Proto-Oncogene Proteins c-fos/metabolism , Somatosensory Cortex/metabolism
3.
Neuroscience ; 140(2): 645-57, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16564637

ABSTRACT

The function of the transient receptor potential vanilloid type 1 capsaicin receptor is subject to modulation by phosphorylation catalyzed by various enzymes including protein kinase C and cAMP-dependent protein kinase. The aim of this study was to compare the significance of the basal and stimulated activity of protein kinase C and cAMP-dependent protein kinase in transient receptor potential vanilloid type 1 receptor responsiveness in the rat in vitro by measurement of the intracellular calcium concentration in cultured trigeminal ganglion neurons and in vivo by determination of the behavioral noxious heat threshold. KT5720, a selective inhibitor of cAMP-dependent protein kinase, reduced the calcium transients induced by capsaicin or the other, much more potent transient receptor potential vanilloid type 1 receptor agonist resiniferatoxin in trigeminal sensory neurons and diminished the drop of the noxious heat threshold (heat allodynia) evoked by intraplantar resiniferatoxin injection. Chelerythrine chloride, a selective inhibitor of protein kinase C, failed to alter either of these responses, although it inhibited the effect of phorbol 12-myristate 13-acetate in the in vitro assay. Staurosporine, a rather nonselective protein kinase inhibitor, failed to reduce the capsaicin- and resiniferatoxin-induced calcium transients but inhibited the resiniferatoxin-evoked heat allodynia. Dibutyryl-cAMP and phorbol 12-myristate 13-acetate, activator(s) of cAMP-dependent protein kinase and protein kinase C, respectively, enhanced the effect of capsaicin in the calcium uptake assay while forskolin, an activator of adenylyl cyclase, augmented that of resiniferatoxin in the heat allodynia model. None of the protein kinase inhibitors or activators altered the calcium transients evoked by high potassium, a nonspecific depolarizing stimulus. It is concluded that basal activity of cAMP-dependent protein kinase, unlike protein kinase C, is involved in the maintenance of transient receptor potential vanilloid type 1 receptor function in somata of trigeminal sensory neurons but stimulation of either cAMP-dependent protein kinase or protein kinase C above the resting level can lead to an enhanced transient receptor potential vanilloid type 1 receptor responsiveness. Similar mechanisms are likely to operate in vivo in peripheral terminals of nociceptive dorsal root ganglion neurons.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons, Afferent/metabolism , Nociceptors/metabolism , Protein Kinase C/metabolism , TRPV Cation Channels/metabolism , Trigeminal Ganglion/metabolism , Adenylyl Cyclases/drug effects , Adenylyl Cyclases/metabolism , Animals , Animals, Newborn , Bucladesine/pharmacology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Diterpenes/pharmacology , Enzyme Activation/physiology , Enzyme Inhibitors/pharmacology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Neurons, Afferent/cytology , Neurons, Afferent/drug effects , Pain/metabolism , Pain/physiopathology , Pain Threshold/drug effects , Pain Threshold/physiology , Phosphorylation/drug effects , Protein Kinase C/antagonists & inhibitors , Rats , Rats, Wistar , TRPV Cation Channels/agonists , Tetradecanoylphorbol Acetate/pharmacology , Trigeminal Ganglion/cytology
4.
Neurosci Lett ; 361(1-3): 155-8, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15135917

ABSTRACT

Effects of the endogenous lipid N-oleoyldopamine (OLDA) were analyzed on the rTRPV1-expressing HT1080 human fibrosarcoma cell line (HT5-1), on cultured rat trigeminal neurons, on the noxious heat threshold of rats and on nocifensive behavior of TRPV1 knockout mice. The EC(50) of capsaicin and OLDA on (45)Ca accumulation of rTRPV1-expressing HT5-1 cells was 36 nM and 1.8 microM, respectively. The efficacy of OLDA was 60% as compared to the maximum response of capsaicin. OLDA (330 nM to 3.3 microM) caused a transient increase in fluorescence of fura-2 loaded cultured small trigeminal neurons of the rat and rTRPV1-transfected HT5-1 cells measured with a ratiometric technique. Repeated application of OLDA and capsaicin caused similar desensitization in the Ca(2+) transients both in cultured neurons and rTRPV1-transfected HT5-1 cells. In the rat intraplantar injection of OLDA (5 nmol) decreased the noxious heat threshold by 6-9 degrees C and this response was strongly inhibited by the TRPV1 antagonist iodoresiniferatoxin (0.05 nmol intraplantarly (i.pl.)). In wild-type mice OLDA (50 nmol i.pl.) evoked paw lifting/licking which was significantly less sustained in TRPV1 knockout mice. It is concluded that on TRPV1 capsaicin receptors OLDA is 50 times less potent than capsaicin and it might serve as an endogenous ligand for TRPV1 in the rat, but more likely in humans.


Subject(s)
Dopamine/analogs & derivatives , Dopamine/pharmacology , Pain/chemically induced , Receptors, Drug/drug effects , Receptors, Drug/deficiency , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Capsaicin/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Hot Temperature/adverse effects , Humans , Ligands , Mice , Mice, Knockout , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Nociceptors/drug effects , Nociceptors/metabolism , Pain/genetics , Pain/metabolism , Pain Threshold/drug effects , Pain Threshold/physiology , Rats , Receptors, Drug/genetics , Transfection
5.
Neuropeptides ; 37(4): 220-32, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12906840

ABSTRACT

Both endothelins and corticotropin releasing factor (CRF) appear in capsaicin-sensitive neurons. We have investigated the effects of human endothelin-1 (ET-1) and CRF in the guinea-pig ileum longitudinal and circular preparations and sought for ways of specific antagonism. With the aid of tachyphylaxis to capsaicin (i.e., rendering capsaicin-sensitive neurons functionally impaired) it was tested if these neurons played a mediating role in the effects of ET-1 or CRF. We also tried to find out whether endogenous endothelin or CRF plays a role in the excitatory and inhibitory effects of capsaicin in the ileum. In preparations at basal tone, both exogenous ET-1 (1-100 nM) and CRF (3-100 nM) caused contraction. These responses were not influenced by capsaicin tachyphylaxis. The contractile effect of ET-1 was not affected by tetrodotoxin (1 microM), atropine (1 microM), methysergide (100 nM), chloropyramine (100 nM) or SR140333 (100 nM) but was significantly inhibited or even abolished by the receptor antagonist BQ123 (3 microM) or BQ788 (3 microM). CRF caused contraction that was fully sensitive to tetrodotoxin (1 microM), tachyphylaxis to CRF or to atropine (1 microM) plus the tachykinin NK1 receptor antagonist SR140333 (200 nM). Atropine alone had a weak inhibitory effect on the contractile action of CRF. Neither the antagonist BQ123 (3 microM) nor CRF tachyphylaxis inhibited the contractile action of capsaicin (2 microM), even in the presence of a mixture of GR82334 (3 microM) and SR142801 (100 nM), for blocking tachykinin NK1 and NK3 receptors, respectively--a treatment that by itself significantly reduced the effect of capsaicin. Exogenous ET-1 (0.3-5 nM), but not CRF (30-100 nM), caused relaxation of the atropine-treated, histamine-precontracted ileum. This effect of ET-1 was significantly inhibited or abolished by BQ123 (10 microM), or BQ788 (3 microM), but was not influenced by capsaicin tachyphylaxis. Likewise, relaxation of the atropine-treated, histamine-precontracted ileum in response to capsaicin was not influenced by the endothelin receptor antagonist BQ788 (3 microM) or BQ788 (3 microM) plus BQ123 (3 microM). Apamin (300 nM) was also without effect on the capsaicin-induced relaxation. In circular muscle strips ET-1 inhibited the indomethacin-induced spontaneous activity. This effect was abolished by BQ123 (3 microM) or BQ788 (3 microM). CRF caused a stimulation of the circular muscle. This stimulatory effect was not influenced by atropine (1 microM) alone, but was inhibited by atropine plus tachykinin NK1 and NK2 receptor antagonists (SR140333 (200 nM) and SR48968 (200 nM)) and also by tetrodotoxin (1 microM). It is concluded that capsaicin-sensitive neurons do not play a role in the effects of exogenous ET-1 or CRF in the guinea-pig ileum. ET-1 can both contract and relax the ileal longitudinal smooth muscle directly, probably via both ETA and ETB receptors. CRF acts by specifically stimulating excitatory (but not inhibitory) neurons of the myenteric plexus. Neither endogenous ET-1 nor CRF seems to play a role in the excitatory or inhibitory effects of capsaicin.


Subject(s)
Corticotropin-Releasing Hormone/pharmacology , Endothelin-1/pharmacology , Ileum/drug effects , Ileum/innervation , Animals , Capsaicin/pharmacology , Endothelin Receptor Antagonists , Female , Guinea Pigs , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/innervation , Neurons/physiology , Tachyphylaxis
SELECTION OF CITATIONS
SEARCH DETAIL
...