Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Immunol ; 56(4): 819-28, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24036152

ABSTRACT

The role of the B7 family molecules in the regulation of the immune response is well documented. A large body of experimental evidence indicates that costimulatory molecules such as B7-1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3 and B7-H4 are critical for initiation, maintenance and down-regulation of the immune response. However the immunological function of butyrophilin (BTN)-like molecules, which are a part of the expanded B7 family, is not known. Here, we demonstrate that the extracellular portion of human BTNL8 can augment Ag-induced activation of T lymphocytes. BTNL8 has two alternatively spliced forms: B7-like and BTN-like. Both isoforms of BTNL8 were expressed concurrently in various human tissues. A putative BTNL8 receptor was detected only on resting T lymphocytes. Administration of BTNL8Ig fusion protein into mice promoted production of Ag-specific IgG during the primary, but not the secondary immune responses. BTNL8 may therefore play an essential role in priming of naïve T lymphocytes.


Subject(s)
Antigens/immunology , Lymphocyte Activation/immunology , Membrane Proteins/immunology , T-Lymphocytes/immunology , Alternative Splicing , Amino Acid Sequence , Animals , B7 Antigens/genetics , B7 Antigens/immunology , Butyrophilins , CHO Cells , Cricetinae , Cricetulus , Female , HEK293 Cells , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Jurkat Cells , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Isoforms/genetics , Protein Isoforms/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
2.
Clin Cancer Res ; 12(4): 1373-82, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16489096

ABSTRACT

PURPOSE: Advanced melanoma is a highly drug-refractory neoplasm representing a significant unmet medical need. We sought to identify melanoma-associated cell surface molecules and to develop as well as preclinically test immunotherapeutic reagents designed to exploit such targets. EXPERIMENTAL DESIGN AND RESULTS: By transcript profiling, we identified glycoprotein NMB (GPNMB) as a gene that is expressed by most metastatic melanoma samples examined. GPNMB is predicted to be a transmembrane protein, thus making it a potential immunotherapeutic target in the treatment of this disease. A fully human monoclonal antibody, designated CR011, was generated to the extracellular domain of GPNMB and characterized for growth-inhibitory activity against melanoma. The CR011 monoclonal antibody showed surface staining of most melanoma cell lines by flow cytometry and reacted with a majority of metastatic melanoma specimens by immunohistochemistry. CR011 alone did not inhibit the growth of melanoma cells. However, when linked to the cytotoxic agent monomethylauristatin E (MMAE) to generate the CR011-vcMMAE antibody-drug conjugate, this reagent now potently and specifically inhibited the growth of GPNMB-positive melanoma cells in vitro. Ectopic overexpression and small interfering RNA transfection studies showed that GPNMB expression is both necessary and sufficient for sensitivity to low concentrations of CR011-vcMMAE. In a melanoma xenograft model, CR011-vcMMAE induced significant dose-proportional antitumor effects, including complete regressions, at doses as low as 1.25 mg/kg. CONCLUSION: These preclinical results support the continued evaluation of CR011-vcMMAE for the treatment of melanoma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunoconjugates/therapeutic use , Melanoma, Experimental/drug therapy , Membrane Glycoproteins/immunology , Oligopeptides/therapeutic use , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibody Specificity , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoconjugates/pharmacology , Immunohistochemistry , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Membrane Glycoproteins/analysis , Membrane Glycoproteins/genetics , Mice , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Treatment Outcome , Xenograft Model Antitumor Assays/methods
3.
Cancer Biol Ther ; 4(6): 659-68, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15917651

ABSTRACT

The Semaphorins are a large family of transmembrane, GPI-anchored and secreted proteins that play an important role in neuronal and endothelial cell guidance. A human gene related to the class 6 Semaphorin family, Semaphorin 6A-1 (Sema 6A-1) was identified by homology-based genomic mining. Recent implication of Sema 3 family members in tumor angiogenesis and our expression analysis of Sema 6A-1 suggested that class 6 Semaphorin might effect tumor neovascularization. The mRNA expression of Sema 6A-1 was elevated in several renal tumor tissue samples relative to adjacent nontumor tissue samples from the same patient. Sema 6A-1 transcript was also expressed in the majority of renal clear cell carcinoma (RCC) cell lines and to a lesser extent in endothelial cells. To test the role of Sema 6A-1 in tumor angiogenesis, we engineered, expressed and purified the Sema 6A-1 soluble extracellular domain (Sema-ECD). The purified Sema-ECD was screened in a variety of endothelial cell-based assays both in vitro and in vivo. In vitro, Sema-ECD blocked VEGF-mediated endothelial cell migration. These effects were explained in part by our observation in endothelial cells that Sema-ECD inhibited VEGF-mediated Src, FAK and ERK phosphorylation. In vivo, mouse Matrigel assays demonstrated that the intraperitoneal administration of recombinant Sema-ECD inhibited both bFGF/VEGF and tumor cell line-induced neovascularization. These findings reveal a novel therapeutic utility for Sema 6A-1 (Sema-ECD) as an inhibitor of growth factor as well as tumor-induced angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carcinoma, Renal Cell/blood supply , Fibroblast Growth Factor 2/antagonists & inhibitors , Neovascularization, Pathologic/prevention & control , Semaphorins/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Adenocarcinoma, Clear Cell/blood supply , Adenocarcinoma, Clear Cell/metabolism , Adenocarcinoma, Clear Cell/therapy , Animals , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/therapy , Cell Movement/drug effects , Collagen/metabolism , Drug Combinations , Endothelium, Vascular/cytology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fibroblast Growth Factor 2/pharmacology , Focal Adhesion Kinase 1/metabolism , Humans , Kidney Neoplasms/blood supply , Kidney Neoplasms/metabolism , Kidney Neoplasms/therapy , Laminin/metabolism , Mice , Mice, Nude , Phosphorylation , Protein Structure, Tertiary , Proteoglycans/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Semaphorins/genetics , Vascular Endothelial Growth Factor A/pharmacology , src-Family Kinases/metabolism
4.
Cancer Res ; 62(13): 3834-41, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12097297

ABSTRACT

The angiopoietins comprise a family of proteins that have pro or antiangiogenic activities. Through a proprietary technology designed to identify transcripts of all expressed genes, we isolated a cDNA encoding an angiopoietin-related protein that we designate angioarrestin. The mRNA expression profile of angioarrestin was striking in that it was down-regulated in many tumor tissues when compared with adjacent nontumor tissue, suggesting a role for this protein in tumor inhibition. To test this hypothesis, we ectopically expressed angioarrestin in HT1080 tumor cells and measured pulmonary tumor nodule formation in nude mice. HT1080 cells expressing angioarrestin showed a marked reduction in the number and size of tumor nodules. In vitro, the recombinant protein was systematically tested in a number of endothelial cell assays and found to block critical processes involved in the angiogenic cascade, such as vascular endothelial growth factor/basic fibroblast growth factor-mediated endothelial cell proliferation, migration, tubular network formation, and adhesion to extracellular matrix proteins. These findings reveal a novel function for angioarrestin as an angiogenesis inhibitor and indicate that the molecule may be a potential cancer therapeutic.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelium, Vascular/drug effects , Proteins/pharmacology , 3T3 Cells , Amino Acid Sequence , Angiopoietin-Like Protein 1 , Angiopoietin-like Proteins , Angiopoietins , Animals , Base Sequence , Cell Adhesion/drug effects , Cell Division/drug effects , Cell Movement/drug effects , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Extracellular Matrix Proteins/metabolism , Fibrosarcoma/blood supply , Fibrosarcoma/drug therapy , Humans , Intercellular Signaling Peptides and Proteins , Mice , Mice, Nude , Molecular Sequence Data , Neovascularization, Pathologic/drug therapy , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...