Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936410

ABSTRACT

Monitoring and analysis of open air basins is a critical task in waste water plant management. These tasks generally require sampling waters at several hard to access points, be it real time with multiparametric sensor probes, or retrieving water samples. Full automation of these processes would require deploying hundreds (if not thousands) of fixed sensors, unless the sensors can be translated. This work proposes the utilization of robotized unmanned aerial vehicle (UAV) platforms to work as a virtual high density sensor network, which could analyze in real time or capture samples depending on the robotic UAV equipment. To check the validity of the concept, an instance of the robotized UAV platform has been fully designed and implemented. A multi-agent system approach has been used (implemented over a Robot Operating System, ROS, middleware layer) to define a software architecture able to deal with the different problems, optimizing modularity of the software; in terms of hardware, the UAV platform has been designed and built, as a sample capturing probe. A description on the main features of the multi-agent system proposed, its architecture, and the behavior of several components is discussed. The experimental validation and performance evaluation of the system components has been performed independently for the sake of safety: autonomous flight performance has been tested on-site; the accuracy of the localization technologies deemed as deployable options has been evaluated in controlled flights; and the viability of the sample capture device designed and built has been experimentally tested.

2.
ISA Trans ; 63: 274-280, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27184416

ABSTRACT

The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach.

3.
Sensors (Basel) ; 16(3)2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26999131

ABSTRACT

The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

4.
Sensors (Basel) ; 16(3): 275, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26927100

ABSTRACT

A new approach to the monocular simultaneous localization and mapping (SLAM) problem is presented in this work. Data obtained from additional bearing-only sensors deployed as wearable devices is fully fused into an Extended Kalman Filter (EKF). The wearable device is introduced in the context of a collaborative task within a human-robot interaction (HRI) paradigm, including the SLAM problem. Thus, based on the delayed inverse-depth feature initialization (DI-D) SLAM, data from the camera deployed on the human, capturing his/her field of view, is used to enhance the depth estimation of the robotic monocular sensor which maps and locates the device. The occurrence of overlapping between the views of both cameras is predicted through geometrical modelling, activating a pseudo-stereo methodology which allows to instantly measure the depth by stochastic triangulation of matched points found through SIFT/SURF. Experimental validation is provided through results from experiments, where real data is captured as synchronized sequences of video and other data (relative pose of secondary camera) and processed off-line. The sequences capture indoor trajectories representing the main challenges for a monocular SLAM approach, namely, singular trajectories and close turns with high angular velocities with respect to linear velocities.


Subject(s)
Artificial Intelligence , Imaging, Three-Dimensional/methods , Photography/methods , Robotics , Algorithms , Humans
5.
ISA Trans ; 52(5): 662-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23701896

ABSTRACT

In this work, a novel data validation algorithm for a single-camera SLAM system is introduced. A 6-degree-of-freedom monocular SLAM method based on the delayed inverse-depth (DI-D) feature initialization is used as a benchmark. This SLAM methodology has been improved with the introduction of the proposed data association batch validation technique, the highest order hypothesis compatibility test, HOHCT. This new algorithm is based on the evaluation of statistically compatible hypotheses, and a search algorithm designed to exploit the characteristics of delayed inverse-depth technique. In order to show the capabilities of the proposed technique, experimental tests have been compared with classical methods. The results of the proposed technique outperformed the results of the classical approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...