Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 22532-22553, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475362

ABSTRACT

The shock imparted by a laser beam striking a metal surface can be increased by the presence of an optically transparent tamper plate bonded to the surface. We explore the shock produced in an aluminum slab, for a selection of tamper materials and drive conditions. The experiments are conducted with a single-pulse laser of maximum fluence up to 100 J/cm2. The pressure and impulse are measured by photon doppler velocimetry, while plasma imaging is used to provide evidence of nonlinear tamper absorption. We demonstrate a pressure enhancement of 50x using simple commercially available optics. We compare results from hard dielectric glasses such as fused silica to soft plastics such as teflon tape. We discuss the mechanism of pressure saturation observed at high pulse fluence, along with some implications regarding applications. Below saturation, overall dependencies on pulse intensity and material parameters such as mechanical impedances are shown to correlate with a model by Fabbro et al.

2.
Appl Opt ; 60(8): 2288-2303, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33690328

ABSTRACT

The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38ps in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot. Measurements made to characterize static and dynamic wavefront characteristics of the ARC are important inputs to the code. Modeling has been validated with measurements of the time-integrated focal spot at the target chamber center (TCC) at low power, and the space-integrated pulse duration at high power, using currently available diagnostics. These simulations indicate that each of the four ARC beamlets achieves a peak intensity on target of up to a few 1018W/cm2.

3.
Appl Opt ; 58(9): 2320-2327, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-31044936

ABSTRACT

To analyze recent experiments with a neodymium-doped fiber amplifier operating in the E-band of wavelengths (1350-1450 nm) and embedded in fused silica, we develop a time-dependent model consisting of rate equations for the aggregate ion populations and the radiation intensities along the amplifier axis. Both copropagating and counterpropagating intensities, including amplified spontaneous emission, are incorporated. The wavelength-dependent cross section for excited state absorption is inferred from auxiliary measurements. Steady-state solutions are obtained over a range of seed wavelengths and powers. The resulting gain curves agree with experiment at low to intermediate powers (less than ∼1 mW). With a proposed addition to the system loss, the agreement extends to saturation (∼100 mW).

4.
Appl Opt ; 52(14): 3329-37, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23669848

ABSTRACT

We develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

SELECTION OF CITATIONS
SEARCH DETAIL
...