Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 323, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328739

ABSTRACT

BACKGROUND: During domestication and subsequent improvement plants were subjected to intensive positive selection for desirable traits. Identification of selection targets is important with respect to the future targeted broadening of diversity in breeding programmes. Rye (Secale cereale L.) is a cereal that is closely related to wheat, and it is an important crop in Central, Eastern and Northern Europe. The aim of the study was (i) to identify diverse groups of rye accessions based on high-density, genome-wide analysis of genetic diversity within a set of 478 rye accessions, covering a full spectrum of diversity within the genus, from wild accessions to inbred lines used in hybrid breeding, and (ii) to identify selective sweeps in the established groups of cultivated rye germplasm and putative candidate genes targeted by selection. RESULTS: Population structure and genetic diversity analyses based on high-quality SNP (DArTseq) markers revealed the presence of three complexes in the Secale genus: S. sylvestre, S. strictum and S. cereale/vavilovii, a relatively narrow diversity of S. sylvestre, very high diversity of S. strictum, and signatures of strong positive selection in S. vavilovii. Within cultivated ryes we detected the presence of genetic clusters and the influence of improvement status on the clustering. Rye landraces represent a reservoir of variation for breeding, and especially a distinct group of landraces from Turkey should be of special interest as a source of untapped variation. Selective sweep detection in cultivated accessions identified 133 outlier positions within 13 sweep regions and 170 putative candidate genes related, among others, to response to various environmental stimuli (such as pathogens, drought, cold), plant fertility and reproduction (pollen sperm cell differentiation, pollen maturation, pollen tube growth), and plant growth and biomass production. CONCLUSIONS: Our study provides valuable information for efficient management of rye germplasm collections, which can help to ensure proper safeguarding of their genetic potential and provides numerous novel candidate genes targeted by selection in cultivated rye for further functional characterisation and allelic diversity studies.


Subject(s)
Plant Breeding , Secale , Secale/genetics , Seeds , Phenotype , Cytoplasm
2.
Sci Rep ; 11(1): 13931, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230499

ABSTRACT

The red fox is one of the most adaptable carnivores inhabiting cities. The aim of our study was to describe the process of Warsaw colonization by the red fox. We focused on: (1) the fox distribution in Warsaw on the basis of presence-absence data (2005-2012) over a grid of 1 × 1 km2, (2) the process of settlement in 29 green areas (study periods 1976-1978, 2004-2012, and 2016-2019) in relation to habitat type, and (3) temporal and spatial patterns of the red fox incidents (1998-2015) reported by Warsaw citizens. We found out that: (1) the red fox penetrated the whole city (i.e. its presence was confirmed in all squares of the grid), (2) 21% of the green areas were colonized in 1976-1978 but 93% in 2016-2019. Forests and riparian habitats were occupied more frequently than parks and cemeteries in 1976-1978 with no difference in the further years; (3) the probability of the fox incidents increased over years, was higher in June-October, on working days, and around noon, and with the share of discontinuous urban fabric in the buffers around incident locations. Nevertheless, the incidents only partially reflect population abundance trends and activity patterns of the species, so should be treated cautiously.


Subject(s)
Ecosystem , Foxes/physiology , Animals , Forests , Geography , Models, Biological , Poland , Population Dynamics , Probability , Time Factors
3.
BMC Genomics ; 21(1): 845, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256606

ABSTRACT

BACKGROUND: Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS: Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS: We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.


Subject(s)
Plant Breeding , Secale , Alleles , Genetic Variation , Phenotype , Secale/genetics , Seeds
4.
PLoS One ; 15(5): e0233807, 2020.
Article in English | MEDLINE | ID: mdl-32470009

ABSTRACT

Benzoxazinoids (BXs) are secondary metabolites with diverse functions, but are primarily involved in protecting plants, mainly from the family Poaceae, against insects and fungal pathogens. Rye is a cereal crop that is highly resistant to biotic stresses. However, its susceptibility to brown rust caused by Puccinia recondita f. sp. secalis (Prs) is still a major problem affecting its commercial production. Additionally, the genetic and metabolic factors related to this disease remain poorly characterized. In this study, we investigated whether and to what extent the brown rust infection and the inoculation procedure affect the contents of specific BXs (HBOA, GDIBOA, DIBOA, GDIMBOA, DIMBOA, and MBOA) and the expression of genes related to BX (ScBx1-5, ScIgl, and Scglu). We revealed that treatments with water and a urediniospore suspension usually downregulate gene expression levels. Moreover, HBOA and DIBOA contents decreased, whereas the contents of the remaining metabolites increased. Specifically, the MBOA content increased more after the mock treatment than after the Prs treatment, whereas the increase in GDIBOA and GDIMBOA levels was usually due to the Prs infection, especially at two of the most critical time-points, 17 and 24 h post-treatment. Therefore, GDIBOA and GDIMBOA are glucosides that are important components of rye defence responses to brown rust. Furthermore, along with MBOA, they protect rye against the stress associated with the inoculation procedure used in this study.


Subject(s)
Basidiomycota/physiology , Benzoxazines/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Secale/genetics , Host-Pathogen Interactions/genetics , Seedlings/genetics , Seedlings/microbiology , Water
5.
Genes (Basel) ; 11(2)2020 02 20.
Article in English | MEDLINE | ID: mdl-32093268

ABSTRACT

Two genes, Bx1 and Igl, both encoding indole-3-glycerol phosphate lyase (IGL), are believed to control the conversion of indole-3-glycerol phosphate (IGP) to indole. The first of these has generally been supposed to be regulated developmentally, being expressed at early stages of plant development with the indole being used in the benzoxazinoid (BX) biosynthesis pathway. In contrast, it has been proposed that the second one is regulated by stresses and that the associated free indole is secreted as a volatile. However, our previous results contradicted this. In the present study, we show that the ScIgl gene takes over the role of ScBx1 at later developmental stages, between the 42nd and 70th days after germination. In the majority of plants with silenced ScBx1 expression, ScIgl was either expressed at a significantly higher level than ScBx1 or it was the only gene with detectable expression. Therefore, we postulate that the synthesis of indole used in BX biosynthesis in rye is controlled by both ScBx1 and ScIgl, which are both regulated developmentally and by stresses. In silico and in vivo analyses of the promoter sequences further confirmed our hypothesis that the roles and modes of regulation of the ScBx1 and ScIgl genes are similar.


Subject(s)
Lyases/genetics , Secale/growth & development , Secale/genetics , Benzoxazines/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Genes, Plant , Germination/genetics , Glycerophosphates/genetics , Glycerophosphates/metabolism , Indoles/metabolism , Plant Proteins/genetics , Promoter Regions, Genetic
6.
Sci Rep ; 8(1): 8428, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849048

ABSTRACT

Identification of bacterial artificial chromosome (BAC) clones containing specific sequences is a prerequisite for many applications, such as physical map anchoring or gene cloning. Existing BAC library screening strategies are either low-throughput or require a considerable initial input of resources for platform establishment. We describe a high-throughput, reliable, and cost-effective BAC library screening approach deploying genotyping platforms which are independent from the availability of sequence information: a genotyping-by-sequencing (GBS) method DArTSeq and the microarray-based Diversity Arrays Technology (DArT). The performance of these methods was tested in a very large and complex rye genome. The DArTseq approach delivered superior results: a several fold higher efficiency of addressing genetic markers to BAC clones and anchoring of BAC clones to genetic map and also a higher reliability. Considering the sequence independence of the platform, the DArTseq-based library screening can be proposed as an attractive method to speed up genomics research in resource poor species.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genotyping Techniques/methods , Secale/genetics , Sequence Analysis , Chromosomes, Plant/genetics , Cloning, Molecular , Genome, Plant/genetics
7.
BMC Plant Biol ; 14: 184, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25085433

ABSTRACT

BACKGROUND: Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. RESULTS: Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. CONCLUSIONS: Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies.


Subject(s)
Genetic Variation , Secale/genetics , Bayes Theorem , Breeding , Chromosome Mapping , Chromosomes, Plant , Cluster Analysis , DNA, Plant/genetics , Genetic Markers , Genetics, Population , Genotyping Techniques , Principal Component Analysis , Secale/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...