Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34451297

ABSTRACT

The perception of a surface and its haptic properties are significantly influenced by roughness and microstructure, respectively, whereby non-negligible parameters include friction, contact area, temperature, and humidity between the human finger and the examined surface. In particular, for a scientific investigation on haptic influences, the production of samples with a defined surface roughness is indispensable. The aim of this study is to analyze the impact of various mold insert roughnesses combined with the influences of particle size, filler-, and compatibilizer content on impression quality. An unfilled high density polyethylene was chosen as a reference for the impression quality investigations, while fillers with significantly different particle sizes and a compatibilizer were used to produce proprietary compounds. Injection molded parts were manufactured utilizing mold inserts with three different line roughness values. To support the obtained results, a multivariate analysis of variance, a simulation of the filling phase as well as a rheological material characterization were conducted. The results revealed that (i) the impression quality can be independent of the applied insert roughness based on the filler particle size that was studied, (ii) an increasing on both filler particle size and compatibilizer content raise the sample roughness as a function of the penetration ability of the filler into the insert valleys, and (iii) with a higher insert roughness, the thermoplastic moldings generally exhibit a significantly smoother topography. An assumed correlation between part roughness and melt viscosity could not be confirmed.

2.
Materials (Basel) ; 13(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158218

ABSTRACT

The growth of poultry meat production is increasing industrial waste quantities every year. Feathers represent a huge part of the waste, and international directives and restrictions prevent landfilling of such biodegradable materials with high burning values. Furthermore, with their unique properties, poultry waste feathers are already a reliable resource for many byproducts, such as keratin extraction, fibres, hydrogel production, etc., all trying to achieve a high-added value. However, mass reduction of waste feathers into useful applications, such as development of alternative building materials, is also an important aspect. To take advantage of feathers' thermal insulation capabilities, sound damping, and biodegradability, we worked towards mixing waste feathers with wood residues (wood shavings, dust, and mixed residues) for production of composite fibreboards, comparable to the market's medium density fibreboards. The emphasis was to evaluate waste poultry feathers as the component of natural insulation composites, along with mixed waste wood residues, to improve their mechanical properties. Various composite fibreboards with different shares of wood and feathers were produced and tested for mechanical, thermal, and acoustic properties, and biodegradability, with comparison to typical particle boards on the market. The addition of waste feather fibres into the fibreboards' structure improved thermal insulation properties, and the biodegradability of fibreboards, but decreased their bending strength. The sound transition acoustic loss results of the presented combination fibreboards with added feathers improved at mid and high frequencies. Finally, production costs are estimated based on small scale laboratory experiments of feather processing (cleaning and drying), with the assumption of cost reduction in cases of large industrial application.

SELECTION OF CITATIONS
SEARCH DETAIL
...