Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e54531, 2013.
Article in English | MEDLINE | ID: mdl-23349921

ABSTRACT

Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the (225)Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of (225)Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain (225)Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties.


Subject(s)
Gold/chemistry , Lanthanum/chemistry , Metal Nanoparticles , Phosphates/chemistry , Radiotherapy , Alpha Particles , Animals , Antibodies/administration & dosage , Chelating Agents/chemistry , Female , Gold/pharmacology , Humans , Immunoconjugates/administration & dosage , Lanthanum/pharmacology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Phosphates/pharmacology , Tissue Distribution
2.
Appl Radiat Isot ; 62(5): 667-79, 2005 May.
Article in English | MEDLINE | ID: mdl-15763472

ABSTRACT

The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.


Subject(s)
Actinium/chemistry , Alpha Particles , Leukemia, Myeloid/radiotherapy , Radioimmunotherapy , Actinium/therapeutic use , Chromatography, Ion Exchange , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...