Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 7: 1-10, 2007.
Article in English | MEDLINE | ID: mdl-20331395

ABSTRACT

The aim of this work was to investigate both the biological activity of an entomotoxin, the pea albumin 1b (PA1b), and the presence or absence of its binding site within an array of insect species. The data obtained showed that insect sensitivity was not related to its taxonomic position. Moreover, PA1b was not toxic to several tested microorganisms. However, the binding site was found to be conserved among very different insects, displaying similar thermodynamic constants regardless of the in vivo species sensitivity. The binding site alone was, therefore, not sufficient for toxicity. One exception was the pea weevil, Bruchus pisorum, which was the only tested species without any detectable binding activity. These findings indicate that the binding site probably has an important endogenous function in insects and that adaptation to pea seeds resulted in the elimination of the toxin binding activity in two independent insect lineages. Other mechanisms are likely to interact with the toxin effects, although they are still largely unknown, but there is no evidence of any specific degradation of PA1b in the midgut of insects insensitive to the toxin, such as Drosophila melanogaster or Mamestra brassicae.


Subject(s)
Albumins/metabolism , Albumins/toxicity , Endotoxins/metabolism , Endotoxins/toxicity , Insecta/drug effects , Animals , Bacteria/drug effects , Binding Sites , Fungi/drug effects , Insecta/metabolism , Pisum sativum/chemistry , Peptide Hydrolases/metabolism
2.
J Invertebr Pathol ; 80(1): 13-21, 2002 May.
Article in English | MEDLINE | ID: mdl-12234537

ABSTRACT

Endosymbionts of the genus Wolbachia were efficiently cured from Trichogramma species by incorporating 0.02% tetracycline into the artificial diet used to rear larvae. Use of this technique yielded stable cured lines (bisexual and arrhenotokous lines) in which no Wolbachia organisms were detected by PCR for up to 14 generations after curing. Four cured strains of Trichogramma pretiosum showed a significantly lower total fecundity compared to their Wolbachia-infected counterpart. However, the fecundity of a single cured strain of Trichogramma evanescens was similar to its Wolbachia-infected counterpart. These differences in the effect on fecundity may be due to differences between the Wolbachia strains infecting T. pretiosum or T. evanescens, providing additional evidence for the hypothesis that a specific interaction exists between some Trichogramma species and their Wolbachia symbionts. Tetracycline in larval diet was also used to generate bisexual strains of Trichogramma oleae and Trichogramma cordubensis so that these species could be crossed with the closely related species, respectively, T. pretiosum and T. evanescens, to test their compatibility. These crosses showed a lack of compatibility, validating maintenance of these as distinct species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Wasps/microbiology , Wolbachia/physiology , Animals , Crosses, Genetic , Female , Fertility/drug effects , Larva/drug effects , Larva/microbiology , Male , Wasps/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...