Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 56(412): 745-53, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15647316

ABSTRACT

An inbreeding line of white clover has been identified which remains non-nodulated under appropriate physiological conditions and so the nitrogen concentration of the plant can be manipulated by altering the nitrate supply to the roots. Non-nodulating plants were used to test the hypothesis that acclimation to nitrogen limitation in white clover involves changes in protease activity and composition. These results indicate that acclimation to nitrogen limitation involves the realignment of constituent proteases without necessarily incurring significant changes in total protease activity. Plants grown at 2.5, 5.0, 7.5, and 10 mM nitrate showed a positive correlation between nitrate supply and foliar protein concentration. Protein profiles, revealed by Coomassie-stained SDS-PAGE, were unchanged between treatments for a given amount of protein. Serine, aspartate/metalloprotease, and two cysteine proteases were identified in the leaves. Although total protease activity per gram fresh weight was unchanged between treatments, the relative contributions of these four proteases was determined by nitrate supply. When plants were stressed further by withholding nitrate there was an increase in cysteine protease activity, but a senescence-related aspartate/metalloprotease was not visible. Hence, while protease expression in white clover leaves responded to the current and past nitrogen status of the plant, the proteases involved in remobilization during nutrient limitation were distinct from those involved during the main senescence period. It is suggested that nitrogen limitation induced an early, reversible stage of senescence in which perturbations in protease activity facilitated the degradation of non-essential proteins in order to increase the chances of plant survival or seed set.


Subject(s)
Medicago/enzymology , Nitrogen/physiology , Peptide Hydrolases/metabolism , Chlorophyll/physiology , Nitrates , Plant Leaves/enzymology , Time Factors
2.
Physiol Plant ; 116(1): 62-72, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12207663

ABSTRACT

In defoliated grasses, where photosynthesis is reduced due to removal of leaf material, it is well established that remobilization of nitrogen occurs from both older remaining leaves and roots towards the younger growing leaves. In contrast, little is known about the movement of nitrogen within intact grass plants experiencing prolonged inhibition of photosynthesis. We tested the following hypotheses in Festuca rubra L. ssp. rubra cv. Boreal: that both reduction of the atmospheric CO2 concentration and defoliation (1) induce mobilization of nitrogen from roots and older leaves towards growing leaves and (2) elicit similar directional change in the abundance of proteins in roots and older leaves relevant to the process of nitrogen mobilization including, glutamine synthetase (GS), EC 6.3.1.2; papain, EC 3.4.22.2; chymopapain, EC 3.4.22.6; ribulose bisphosphate carboxylase/oxygenase (Rubisco), EC 4.1.1.39; and the light harvesting complex of photosystem II (LHCPII). After growth at ambient atmospheric CO2 concentration, plants of F. rubra were subject to atmospheres containing either ambient (350 micro l l-1) or deplete (< 20 micro l l-1) CO2. Concurrently, plants were either left intact or defoliated on one occasion. Steady state 15N labelling coupled with a series of destructive harvests over a 7-day period enabled changes in the nitrogen dynamics of the plants to be established. Proteins pertinent to the process of nitrogen mobilization were quantified by immunoblotting. Irrespective of defoliation, plants in ambient CO2 mobilized nitrogen from older to growing leaves. This mobilization was inhibited by deplete CO2. Greater concentration of Rubisco and reduced chymopapain abundance in older remaining leaves of intact plants, in deplete compared with ambient CO2, suggested the inhibition of mobilization was due to inhibition of protein degradation, rather than to the export of degradation products. Both deplete CO2 and defoliation induced nitrogen mobilization from roots to growing leaves. In plants at ambient CO2, defoliation did not affect nitrogen uptake or its allocation. Therefore in F. rubra nitrogen mobilization can occur independently of any downregulation of nitrogen uptake. This suggests either different signal compounds may act to downregulate uptake and upregulate mobilization, or if one particular signalling compound is used its concentration threshold differs for induction of mobilization and downregulation of uptake. The abundance of the cysteine proteases papain and chymopapain was low in roots suggesting that they were not involved in protein degradation in this tissue.

3.
Ann Bot ; 89(6): 731-40, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12102529

ABSTRACT

The stay-green phenotype results from a naturally occurring mutation in which senescent leaves retain their chlorophyll and the associated apoprotein, LHCPII. Protection of this protein pool could deliver grass with enhanced protein content and could decrease the extent of protein degradation by plant proteases in the rumen. This would enhance the efficiency of protein utilization in livestock to the benefit of the environment. Field plots of stay-green and wild-type Lolium perenne were defoliated at intervals to simulate grazing. There were variations in foliar protein content and proteolysis throughout the year, but no significant differences between genotypes when material was analysed fresh or after it was cut and dried to simulate hay-making, which possibly induced senescence. In a subsequent experiment with stay-green and wild-type L temulentum, increased protein retention and decreased protein degradability were observed in stay-green leaves that were allowed to senescence naturally and extensively on the plant. That there is no difference between the two L. perenne genotypes suggests that as a field crop in grazed pastures the stay-green genotype would not confer a nutritional advantage in terms of protein degradability. It is possible that grazing promotes a high proportion of non-senescent to senescent leaf material within the sward and thus any advantage conferred by the stay-green phenotype would be effectively masked by an abundance of mature foliage. It is suggested that the stay-green trait would be of benefit in areas where agricultural practice permits extensive natural senescence to occur.


Subject(s)
Animal Feed/analysis , Chlorophyll/metabolism , Genetic Engineering , Lolium/chemistry , Lolium/physiology , Plant Proteins/analysis , Ruminants , Animal Nutritional Physiological Phenomena , Animals , Color , Genotype , Half-Life , Lolium/genetics , Phenotype , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...