Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(23): 16410-16425, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38015154

ABSTRACT

The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.


Subject(s)
Epoxide Hydrolases , Liver , Rats , Animals , Dogs , Epoxide Hydrolases/metabolism , Liver/metabolism , Microsomes, Liver/metabolism
2.
J Med Chem ; 64(4): 1889-1903, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33592148

ABSTRACT

The cytosolic metalloenzyme leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet. Herein, we disclose the discovery and preclinical profile of LYS006, a highly potent and selective LTA4H inhibitor. A focused fragment screen identified hits that could be cocrystallized with LTA4H and inspired a fragment merging. Further optimization led to chiral amino acids and ultimately to LYS006, a picomolar LTA4H inhibitor with exquisite whole blood potency and long-lasting pharmacodynamic effects. Due to its high selectivity and its ability to fully suppress LTB4 generation at low exposures in vivo, LYS006 has the potential for a best-in-class LTA4H inhibitor and is currently investigated in phase II clinical trials in inflammatory acne, hidradenitis suppurativa, ulcerative colitis, and NASH.


Subject(s)
Aminobutyrates/therapeutic use , Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Pyridines/therapeutic use , Aminobutyrates/chemical synthesis , Aminobutyrates/pharmacokinetics , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Arthritis, Experimental/drug therapy , Dogs , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Inflammation/drug therapy , Male , Mice, Inbred C57BL , Molecular Structure , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
3.
Sci Rep ; 7(1): 13591, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051536

ABSTRACT

Leukotriene A4 Hydrolase (LTA4H) is a bifunctional zinc metalloenzyme that comprises both epoxide hydrolase and aminopeptidase activity, exerted by two overlapping catalytic sites. The epoxide hydrolase function of the enzyme catalyzes the biosynthesis of the pro-inflammatory lipid mediator leukotriene (LT) B4. Recent literature suggests that the aminopeptidase function of LTA4H is responsible for degradation of the tripeptide Pro-Gly-Pro (PGP) for which neutrophil chemotactic activity has been postulated. It has been speculated that the design of epoxide hydrolase selective LTA4H inhibitors that spare the aminopeptidase pocket may therefore lead to more efficacious anti-inflammatory drugs. In this study, we conducted a high throughput screen (HTS) for LTA4H inhibitors and attempted to rationally design compounds that would spare the PGP degrading function. While we were able to identify compounds with preference for the epoxide hydrolase function, absolute selectivity was not achievable for highly potent compounds. In order to assess the relevance of designing such aminopeptidase-sparing LTA4H inhibitors, we studied the role of PGP in inducing inflammation in different settings in wild type and LTA4H deficient (LTA4H KO) animals but could not confirm its chemotactic potential.  Attempting to design highly potent epoxide hydrolase selective LTA4H inhibitors, therefore seems to be neither feasible nor relevant.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Oligopeptides/metabolism , Proline/analogs & derivatives , Aminopeptidases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Catalytic Domain , Crystallography, X-Ray , Drug Design , Epoxide Hydrolases/metabolism , High-Throughput Screening Assays/methods , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia/metabolism , Pneumonia/pathology , Proline/metabolism , Structure-Activity Relationship
4.
PLoS One ; 11(12): e0168252, 2016.
Article in English | MEDLINE | ID: mdl-28005953

ABSTRACT

RATIONAL: Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist. RESULTS: NIBR-0213 was tolerated at the efficacious oral dose of 30 mg/kg BID in the rat adjuvant-induced arthritis (AiA) model, with no sign of labored breathing. However, it induced dose-dependent acute vascular pulmonary leakage and pleural effusion that fully resolved within 3-4 days, as evidenced by MRI monitoring. At the supra-maximal oral dose of 300 mg/kg QD, NIBR-0213 impaired lung function (with increased breathing rate and reduced tidal volume) within the first 24 hrs. Two weeks of NIBR-0213 oral dosing at 30, 100 and 300 mg/kg QD induced moderate pulmonary changes, characterized by alveolar wall thickening, macrophage accumulation, fibrosis, micro-hemorrhage, edema and necrosis. In addition to this picture of chronic inflammation, perivascular edema and myofiber degeneration observed in the heart were also indicative of vascular leakage and its consequences. CONCLUSIONS: Overall, these observations suggest that, in the rat, the lung is the main target organ for the S1P1 competitive antagonism-induced acute vascular leakage, which appears first as transient and asymptomatic but could lead, upon chronic dosing, to lung remodeling with functional impairments. Hence, this not only raises the question of organ specificity in the homeostasis of vascular barriers, but also provides insight into the pre-clinical evaluation of a potential safety window for S1P1 competitive antagonists as drug candidates.


Subject(s)
Aniline Compounds/pharmacology , Arthritis, Experimental/physiopathology , Capillary Permeability/drug effects , Dipeptides/pharmacology , Inflammation/physiopathology , Lysophospholipids/metabolism , Receptors, Lysosphingolipid/antagonists & inhibitors , Sphingosine/analogs & derivatives , Adjuvants, Immunologic/toxicity , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Cells, Cultured , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Homeostasis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Lung/drug effects , Lung/pathology , Male , Rats , Rats, Inbred Lew , Rats, Wistar , Signal Transduction/drug effects , Sphingosine/metabolism
5.
J Med Chem ; 55(22): 9722-34, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23067318

ABSTRACT

A prodrug approach to optimize the oral exposure of a series of sphingosine 1-phosphate receptor 1 (S1P(1)) antagonists for chronic efficacy studies led to the discovery of (S)-2-{[3'-(4-chloro-2,5-dimethylphenylsulfonylamino)-3,5-dimethylbiphenyl-4-carbonyl]methylamino}-4-dimethylaminobutyric acid methyl ester 14. Methyl ester prodrug 14 is hydrolyzed in vivo to the corresponding carboxylic acid 15, a potent and selective S1P(1) antagonist. Oral administration of the prodrug 14 induces sustained peripheral blood lymphocyte reduction in rats. In a rat cardiac transplantation model coadministration of a nonefficacious dose of prodrug 14 with a nonefficacious dose of sotrastaurin (19), a protein kinase C inhibitor, or everolimus (20), an mTOR inhibitor, effectively prolonged the survival time of rat cardiac allografts. This demonstrates that clinically useful immunomodulation mediated by the S1P(1) receptor can be achieved with an S1P(1) antagonist generated in vivo after oral administration of its prodrug.


Subject(s)
Aminobutyrates/chemical synthesis , Heart Transplantation , Lymphocytes/drug effects , Prodrugs/chemical synthesis , Receptors, Lysosphingolipid/antagonists & inhibitors , Sulfonamides/chemical synthesis , Administration, Oral , Aminobutyrates/administration & dosage , Aminobutyrates/pharmacology , Animals , Lymphocytes/metabolism , Magnetic Resonance Spectroscopy , Male , Molecular Structure , Prodrugs/administration & dosage , Prodrugs/pharmacology , Rats , Rats, Inbred Lew , Sulfonamides/administration & dosage , Sulfonamides/pharmacology
6.
Chem Biol ; 19(9): 1142-51, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22999882

ABSTRACT

Lymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P(1)), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P(1) receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P(1) antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P(1) antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P(1) receptor antagonism and to differentiate the effects from those of S1P(1) agonists.


Subject(s)
Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Dipeptides/pharmacology , Dipeptides/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Receptors, Lysosphingolipid/antagonists & inhibitors , Administration, Oral , Aniline Compounds/administration & dosage , Aniline Compounds/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Dipeptides/administration & dosage , Dipeptides/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Leukocytes, Mononuclear/drug effects , Lymphocyte Count , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Rats , Rats, Inbred Lew , Rats, Wistar , Sphingosine-1-Phosphate Receptors , Structure-Activity Relationship , Substrate Specificity
7.
Bioorg Med Chem Lett ; 16(1): 108-12, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16236504

ABSTRACT

The design, synthesis, and the biological evaluation of 2-benzamido-pyrimidines as novel IKK inhibitors are described. By optimization of the lead compound 3, compounds 16 and 24 are identified as good inhibitors of IKK2 with IC(50) values of 40 and 25 nM, respectively. Compound 16 also demonstrated significant in vivo activity in an acute model of cytokine release.


Subject(s)
Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Pyrimidines/chemical synthesis , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Inhibitory Concentration 50 , Models, Chemical , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...