Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(15): 152501, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683002

ABSTRACT

We report the first mass measurement of the proton-halo candidate ^{22}Al performed with the low energy beam ion trap facility's 9.4 T Penning trap mass spectrometer at facility for rare isotope beams. This measurement completes the mass information for the lightest remaining proton-dripline nucleus achievable with Penning traps. ^{22}Al has been the subject of recent interest regarding a possible halo structure from the observation of an exceptionally large isospin asymmetry [J. Lee et al., Large isospin asymmetry in Si22/O22 Mirror Gamow-Teller transitions reveals the halo structure of ^{22}Al, Phys. Rev. Lett. 125, 192503 (2020).PRLTAO0031-900710.1103/PhysRevLett.125.192503]. The measured mass excess value of ME=18 092.5(3) keV, corresponding to an exceptionally small proton separation energy of S_{p}=100.4(8) keV, is compatible with the suggested halo structure. Our result agrees well with predictions from sd-shell USD Hamiltonians. While USD Hamiltonians predict deformation in the ^{22}Al ground state with minimal 1s_{1/2} occupation in the proton shell, a particle-plus-rotor model in the continuum suggests that a proton halo could form at large quadrupole deformation. These results emphasize the need for a charge radius measurement to conclusively determine the halo nature.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37815423

ABSTRACT

At the ReAccelerator within the Facility for Rare Isotope Beams, a combination of an interchangeable aluminum foil and a silicon detector was developed to quantify isobaric contamination in rare isotope beams. The device is simple to operate and is now used routinely. In this article, we describe the system and show an application of the device to determine the level of contamination of an Si-32 rare isotope beam by stable S-32. In addition, we describe how the new diagnostic device helped confirm an enhancement of the beam purity prior to beam delivery to experiments.

3.
Phys Rev Lett ; 126(4): 042501, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576685

ABSTRACT

We report high-precision mass measurements of ^{50-55}Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for ^{53-55}Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers N=32 and N=34 above proton-magic Z=20. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the N=32 isotone, confirming that the empirical neutron shell gap energies peak at the doubly magic ^{52}Ca. Moreover, our data, combined with other recent measurements, do not support the existence of a closed neutron shell in ^{55}Sc at N=34. The results were compared to predictions from both ab initio and phenomenological nuclear theories, which all had success describing N=32 neutron shell gap energies but were highly disparate in the description of the N=34 isotone.

4.
Phys Rev Lett ; 123(23): 239905, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868474

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.120.032701.

5.
Phys Rev Lett ; 120(3): 032701, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400535

ABSTRACT

We report the mass measurement of ^{56}Cu, using the LEBIT 9.4 T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of ^{56}Cu is critical for constraining the reaction rates of the ^{55}Ni(p,γ) ^{56}Cu(p,γ) ^{57}Zn(ß^{+}) ^{57}Cu bypass around the ^{56}Ni waiting point. Previous recommended mass excess values have disagreed by several hundred keV. Our new value, ME=-38626.7(7.1) keV, is a factor of 30 more precise than the extrapolated value suggested in the 2012 atomic mass evaluation [Chin. Phys. C 36, 1603 (2012)CPCHCQ1674-113710.1088/1674-1137/36/12/003], and more than a factor of 12 more precise than values calculated using local mass extrapolations, while agreeing with the newest 2016 atomic mass evaluation value [Chin. Phys. C 41, 030003 (2017)CPCHCQ1674-113710.1088/1674-1137/41/3/030003]. The new experimental average, using our new mass and the value from AME2016, is used to calculate the astrophysical ^{55}Ni(p,γ) and ^{56}Cu(p,γ) forward and reverse rates and perform reaction network calculations of the rp process. These show that the rp-process flow redirects around the ^{56}Ni waiting point through the ^{55}Ni(p,γ) route, allowing it to proceed to higher masses more quickly and resulting in a reduction in ashes around this waiting point and an enhancement to higher-mass ashes.

6.
Phys Rev Lett ; 116(1): 012501, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26799013

ABSTRACT

We report the determination of the Q(EC) value of the mirror transition of (11)C by measuring the atomic masses of (11)C and (11)B using Penning trap mass spectrometry. More than an order of magnitude improvement in precision is achieved as compared to the 2012 Atomic Mass Evaluation (Ame2012) [Chin. Phys. C 36, 1603 (2012)]. This leads to a factor of 3 improvement in the calculated Ft value. Using the new value, Q(EC)=1981.690(61) keV, the uncertainty on Ft is no longer dominated by the uncertainty on the Q(EC) value. Based on this measurement, we provide an updated estimate of the Gamow-Teller to Fermi mixing ratio and standard model values of the correlation coefficients.

7.
Phys Rev Lett ; 114(23): 232502, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196795

ABSTRACT

We report the first direct measurement of the (14)O superallowed Fermi ß-decay QEC value, the last of the so-called "traditional nine" superallowed Fermi ß decays to be measured with Penning trap mass spectrometry. (14)O, along with the other low-Z superallowed ß emitter, (10)C, is crucial for setting limits on the existence of possible scalar currents. The new ground state QEC value, 5144.364(25) keV, when combined with the energy of the 0(+) daughter state, Ex(0(+))=2312.798(11) keV [F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991)], provides a new determination of the superallowed ß-decay QEC value, QEC(sa)=2831.566(28) keV, with an order of magnitude improvement in precision, and a similar improvement to the calculated statistical rate function f. This is used to calculate an improved Ft value of 3073.8(2.8) s.

8.
Rev Sci Instrum ; 85(9): 093503, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273722

ABSTRACT

A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive (37)K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 µs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10(5) in resonant photon detection measurements. The hyperfine structure of (37)K and its isotope shift relative to the stable (39)K were determined using 5 × 10(4) s(-1) (37)K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A((2)S(1/2)) = 120.3(1.4) MHz, A((2)P(1/2)) = 15.2(1.1) MHz, and A((2)P(3/2)) = 1.4(8) MHz, and the isotope shift δν(39, 37) = -264(3) MHz are consistent with the previously determined values, where available.

9.
Rev Sci Instrum ; 85(2): 02B701, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593600

ABSTRACT

An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).

10.
Rev Sci Instrum ; 83(2): 02A908, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380249

ABSTRACT

The ReA reaccelerator is being added to the National Superconducting Cyclotron Laboratory (NSCL) fragmentation facility in order to provide exotic rare-isotope beams, not available at the Isotope Separation On-Line facilities, in the several-MeV/u energy range. The first stage of the NSCL reaccelerator complex, consisting of an EBIT charge breeder, a room-temperature radiofrequency quadrupole (RFQ) accelerator, and superconducting linear accelerator modules, has been completed and is being put into operation. Commissioning of the EBIT has started by extracting charge-bred residual gas ions, ions created from a Ne gas jet directed across the EBIT's electron beam and ions captured from an external test ion source. Charge-bred ions from the Ne gas jet have been extracted as a pulse and accelerated through the RFQ and the two cryomodules.

11.
Vet Comp Orthop Traumatol ; 24(3): 223-7, 2011.
Article in English | MEDLINE | ID: mdl-21327289

ABSTRACT

The modified Maquet technique (MMT) uses the same principle as the tibial tuberosity advancement (TTA) for stabilization of the cranial cruciate ligament-deficient stifle in the dog. In the MMT, the tibial tuberosity is advanced in a similar manner to that used in the TTA, however the means by which the tibial crest is stabilized differs. The plate and fork originally described by Montavon et al. are not used (7). The MMT was first described by Maquet for use on humans; it leaves intact a distal bony attachment to the tibial shaft, and the tuberosity is either reinforced or not by a figure-of-eight wire. In this paper, we describe the MMT, and we report the results of our first 20 canine patients with cranial cruciate ligament rupture that were treated by the MMT. Mean clinical bone healing time was 6.8 weeks (range 4 to 12 weeks). The evidence provided by this clinical communication suggests that it is technically possible to achieve an advancement of the tibial tuberosity without the need for a plate. The MMT deserves consideration as a primary treatment option for cranial cruciate ligament rupture in dogs, and further evaluation in large clinical studies. Long-term follow-up and force plate analysis would be necessary to compare the MMT to both the TTA and the tibial plateau levelling osteotomy.


Subject(s)
Anterior Cruciate Ligament/surgery , Dog Diseases/surgery , Dogs/surgery , Surgical Procedures, Operative/veterinary , Animals , Dog Diseases/pathology , Surgical Procedures, Operative/methods
12.
Rev Sci Instrum ; 81(2): 02A503, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192358

ABSTRACT

NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.

13.
Phys Rev Lett ; 102(13): 132501, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19392349

ABSTRACT

High-precision Penning-trap mass measurements of the N approximately Z approximately 34 nuclides 68Se, 70Se, (70m)Br, and 71Br were performed, reaching experimental uncertainties of 0.5-15 keV. The new and improved mass data together with theoretical Coulomb displacement energies were used as input for rp process network calculations. An increase in the effective lifetime of the waiting point nucleus 68Se was found, and more precise information was obtained on the luminosity during a type I x-ray burst along with the final elemental abundances after the burst.

14.
Phys Rev Lett ; 100(13): 132501, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18517939

ABSTRACT

A new long-lived isomeric state in (65)Fe has been discovered with Penning trap mass spectrometry and high-precision mass measurements of the neutron-rich isotopes (63-65)Fe and (64-66)Co have been performed with the Low-Energy Beam and Ion Trap Facility at the NSCL. For the new isomer in (65)Fe an excitation energy of 402(5) keV has been determined from the measured mass difference between the isomeric and ground states. The mass uncertainties of all isotopes have been reduced by a factor of 10-100 compared to previous results. In the case of (64)Co the previous mass value was found to deviate by about 5 standard deviations from the new measurement.

15.
Rev Sci Instrum ; 79(2 Pt 2): 02A706, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315154

ABSTRACT

Reacceleration of low-energy rare isotope beams available from gas stopping of fast-fragment beams or from an ISOL target station to energies in the range of 0.3-12 MeV/nucleon is needed for experiments such as low-energy Coulomb excitation and transfer reaction studies and for the precise study of astrophysical reactions. The implementation of charge breeding as a first step in a reaccelerator is a key to obtaining a compact and cost-efficient reacceleration scheme. For highest efficiency it is essential that single charge states are obtained in a short breeding time. A low-emittance beam must be delivered. An electron beam ion trap (EBIT) has the potential to meet these requirements. An EBIT-based charge breeder is presently under design and construction at the NSCL as part of the construction of a reaccelerator for stopped beams from projectile fragmentation. This new facility will have the potential to provide low-energy rare isotope beams not yet available elsewhere.

16.
Phys Rev Lett ; 98(12): 122701, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17501116

ABSTRACT

We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. Gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2 nu 1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core shows the importance of the proton excitations across the Z=28 shell gap to the understanding of the nuclear structure in the neutron-rich nuclei with N approximately 40.

17.
Phys Rev Lett ; 96(15): 152501, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16712152

ABSTRACT

The mass of the short-lived radio nuclide 38Ca (T(1/2) = 440 ms) has been measured with the 9.4-T Penning trap mass spectrometer of the Low-Energy Beam and Ion Trap Facility. A mass uncertainty of deltam = 280 eV has been achieved, corresponding to deltam/m = 8 x 10(-9). The result makes 38Ca, a superallowed beta emitter, a new candidate to test the conserved-vector-current hypothesis. The experiment is also the first demonstration that short-lived radioactive isotopes produced by projectile fragmentation of relativistic heavy-ion beams can be slowed down and prepared such that precision experiments of this kind are possible.

18.
Phys Rev Lett ; 94(17): 172501, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15904283

ABSTRACT

We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."

19.
Phys Rev Lett ; 93(15): 150801, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524861

ABSTRACT

Mass measurements with a relative precision of better than 1.5 x 10(-8) were performed on 22Mg and its reaction partners 21Na and 22Na with the ISOLTRAP Penning trap mass spectrometer at CERN, yielding the mass excesses D(22Mg)=-399.92(27) keV, D(21Na)=-2184.71(21) keV, and D(22Na)=-5181.56(16) keV. The importance of these results is twofold. First, a comparative half-life (Ft value) has been obtained for the superallowed beta decay of 22Mg to further test the conserved-vector-current hypothesis. Second, the resonance energy for the 21Na proton capture reaction has been independently determined, allowing direct comparisons of observable gamma radiation in nova explosions with the yield expected from models.

20.
Phys Rev Lett ; 93(16): 161104, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524973

ABSTRACT

The mass of one of the three major waiting points in the astrophysical rp process 72Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of deltam/m=1.2x10(-7) (deltam=8 keV). (73,74)Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of 72-74Kr to reanalyze the role of 72Kr (T(1/2)=17.2 s) in the rp process during x-ray bursts and conclude that 72Kr is a strong waiting point delaying the burst duration with at least 80% of its beta-decay half-life.

SELECTION OF CITATIONS
SEARCH DETAIL
...