Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(42): e2204474119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215469

ABSTRACT

Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars' deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA's InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 [Formula: see text] 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 [Formula: see text] 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.


Subject(s)
Extraterrestrial Environment , Mars , Earth, Planet , Iron , Minerals
2.
Nature ; 591(7848): 82-86, 2021 03.
Article in English | MEDLINE | ID: mdl-33658696

ABSTRACT

The mechanical properties of olivine-rich rocks are key to determining the mechanical coupling between Earth's lithosphere and asthenosphere. In crystalline materials, the motion of crystal defects is fundamental to plastic flow1-4. However, because the main constituent of olivine-rich rocks does not have enough slip systems, additional deformation mechanisms are needed to satisfy strain conditions. Experimental studies have suggested a non-Newtonian, grain-size-sensitive mechanism in olivine involving grain-boundary sliding5,6. However, very few microstructural investigations have been conducted on grain-boundary sliding, and there is no consensus on whether a single or multiple physical mechanisms are at play. Most importantly, there are no theoretical frameworks for incorporating the mechanics of grain boundaries in polycrystalline plasticity models. Here we identify a mechanism for deformation at grain boundaries in olivine-rich rocks. We show that, in forsterite, amorphization takes place at grain boundaries under stress and that the onset of ductility of olivine-rich rocks is due to the activation of grain-boundary mobility in these amorphous layers. This mechanism could trigger plastic processes in the deep Earth, where high-stress conditions are encountered (for example, at the brittle-plastic transition). Our proposed mechanism is especially relevant at the lithosphere-asthenosphere boundary, where olivine reaches the glass transition temperature, triggering a decrease in its viscosity and thus promoting grain-boundary sliding.

3.
Psychol Sci ; 32(3): 326-339, 2021 03.
Article in English | MEDLINE | ID: mdl-33539228

ABSTRACT

In this direct replication of Mueller and Oppenheimer's (2014) Study 1, participants watched a lecture while taking notes with a laptop (n = 74) or longhand (n = 68). After a brief distraction and without the opportunity to study, they took a quiz. As in the original study, laptop participants took notes containing more words spoken verbatim by the lecturer and more words overall than did longhand participants. However, laptop participants did not perform better than longhand participants on the quiz. Exploratory meta-analyses of eight similar studies echoed this pattern. In addition, in both the original study and our replication, higher word count was associated with better quiz performance, and higher verbatim overlap was associated with worse quiz performance, but the latter finding was not robust in our replication. Overall, results do not support the idea that longhand note taking improves immediate learning via better encoding of information.


Subject(s)
Learning , Microcomputers , Humans
4.
Skin Res Technol ; 27(2): 257-265, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32729174

ABSTRACT

OBJECTIVE: Metrology and measures are changing the way patients and consumers behave and help find new, more effective solutions. METHODS: This Review and Prospective Paper identifies applications in the field of dermatology and beauty tech. RESULTS: The review of skincare as well as dermatological applications and analysis provides a comprehensive picture of the dynamics in the process of impacting the complete value chain in the field of dermo-cosmetics, as well as the opportunities offered by a strict approach around new and innovative measures, especially in the field of better patient/consumer knowledge, understanding, and personalized solution offering. It identifies the new business models or opportunities for the cosmetic industry. CONCLUSION: Adapting metrology and measures to skincare is a significant opportunity to change the way things are done today.


Subject(s)
Cosmetics , Beauty , Humans , Prospective Studies , Skin Care , Technology
5.
Sci Adv ; 2(3): e1501671, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26998522

ABSTRACT

The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.


Subject(s)
Cold Temperature , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Microscopy, Electron, Transmission/methods , Nanotechnology , Silicates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...