Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 373(6555): 673-678, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353950

ABSTRACT

Fully controllable ultracold atomic systems are creating opportunities for quantum sensing, yet demonstrating a quantum advantage in useful applications by harnessing entanglement remains a challenging task. Here, we realize a many-body quantum-enhanced sensor to detect displacements and electric fields using a crystal of ~150 trapped ions. The center-of-mass vibrational mode of the crystal serves as a high-Q mechanical oscillator, and the collective electronic spin serves as the measurement device. By entangling the oscillator and collective spin and controlling the coherent dynamics via a many-body echo, a displacement is mapped into a spin rotation while avoiding quantum back-action and thermal noise. We achieve a sensitivity to displacements of 8.8 ± 0.4 decibels below the standard quantum limit and a sensitivity for measuring electric fields of 240 ± 10 nanovolts per meter in 1 second. Feasible improvements should enable the use of trapped ions in searches for dark matter.

2.
Phys Rev A (Coll Park) ; 102: 053106-5310616, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-35024525

ABSTRACT

Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called the drumhead modes, which can be used to implement a range of quantum information protocols. However, experimental observations of crystals with Doppler-cooled and even near-ground-state-cooled drumhead modes reveal an unresolved drumhead-mode spectrum. In this work, we establish in-plane thermal fluctuations in ion positions as a major contributor to the broadening of the drumhead-mode spectrum. In the process, we demonstrate how the confining magnetic field leads to unconventional in-plane normal modes, whose average potential and kinetic energies are not equal. This property, in turn, has implications for the sampling procedure required to choose the in-plane initial conditions for molecular-dynamics simulations. For current operating conditions of the NIST Penning trap, our study suggests that the two-dimensional crystals produced in this trap undergo in-plane potential-energy fluctuations of the order of 10mK. Our study therefore motivates the need for designing improved techniques to cool the in-plane degrees of freedom.

3.
Phys Rev A (Coll Park) ; 101(6)2020 Jun.
Article in English | MEDLINE | ID: mdl-34796312

ABSTRACT

Many quantum state preparation methods rely on a combination of dissipative quantum state initialization followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum measurement as an additional tool for quantum state preparation. Starting from a pure separable multipartite state, a control sequence, which includes rotation, spin squeezing via one-axis twisting, quantum measurement, and postselection, generates highly entangled multipartite states, which we refer to as projected squeezed (PS) states. Through an optimization method, we then identify parameters required to maximize the overlap fidelity of the PS states with the maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The method leads to an appreciable decrease in the state preparation time of GHZ states for successfully postselected outcomes when compared to preparation through unitary evolution with one-axis twisting only.

4.
Phys Rev Lett ; 122(5): 053603, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30821989

ABSTRACT

We experimentally study electromagnetically induced transparency cooling of the drumhead modes of planar two-dimensional arrays with up to N≈190 Be^{+} ions stored in a Penning trap. Substantial sub-Doppler cooling is observed for all N drumhead modes. Quantitative measurements for the center-of-mass mode show near ground-state cooling with motional quantum numbers of n[over ¯]=0.3±0.2 obtained within 200 µs. The measured cooling rate is faster than that predicted by single particle theory, consistent with a quantum many-body calculation. For the lower frequency drumhead modes, quantitative temperature measurements are limited by frequency instabilities, but near ground-state cooling of the full bandwidth is strongly suggested. This advance will greatly improve the performance of large trapped ion crystals in quantum information and metrology applications.

5.
Phys Rev Lett ; 122(3): 030501, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30735427

ABSTRACT

Trapped ions offer a pristine platform for quantum computation and simulation, but improving their coherence remains a crucial challenge. Here, we propose and analyze a new strategy to enhance the coherent interactions in trapped ion systems via parametric amplification of the ions' motion-by squeezing the collective motional modes (phonons), the spin-spin interactions they mediate can be significantly enhanced. We illustrate the power of this approach by showing how it can enhance collective spin states useful for quantum metrology, and how it can improve the speed and fidelity of two-qubit gates in multi-ion systems, important ingredients for scalable trapped ion quantum computation. Our results are also directly relevant to numerous other physical platforms in which spin interactions are mediated by bosons.

6.
Article in English | MEDLINE | ID: mdl-33134654

ABSTRACT

In trapped-ion quantum information processing, interactions between spins (qubits) are mediated by collective modes of motion of an ion crystal. While there are many different experimental strategies to design such interactions, they all face both technical and fundamental limitations to the achievable coherent interaction strength. In general, obtaining strong interactions and fast gates is an ongoing challenge. Here, we extend previous work [W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, and M. Foss-Feig, Phys. Rev. Lett. 122, 030501 (2019)] and present a general strategy for enhancing the interaction strengths in trapped-ion systems via parametric amplification of the ions' motion. Specifically, we propose a stroboscopic protocol using alternating applications of parametric amplification and spin-motion coupling. In comparison with the previous work, we show that the current protocol can lead to larger enhancements in the coherent interaction that increase exponentially with the gate time.

7.
Science ; 352(6291): 1297-301, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27284189

ABSTRACT

Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of (9)Be(+) ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.

8.
Phys Rev Lett ; 108(21): 213003, 2012 May 25.
Article in English | MEDLINE | ID: mdl-23003249

ABSTRACT

We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D ion array using entanglement-induced decoherence as a method of transduction. Our system is a ~400 µm-diameter planar crystal of several hundred 9Be(+) ions exhibiting complex drumhead modes in the confining potential of a Penning trap. Exploiting precise control over the 9Be(+) valence electron spins, we apply a homogeneous spin-dependent optical dipole force to excite arbitrary transverse modes with an effective wavelength approaching the interparticle spacing (~20 µm). Center-of-mass displacements below 1 nm are detected via the entanglement of spin and motional degrees of freedom.

9.
Nature ; 484(7395): 489-92, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22538611

ABSTRACT

The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.

10.
Nature ; 473(7345): 39-40, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21544140
11.
Nat Nanotechnol ; 5(9): 646-50, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20729835

ABSTRACT

The ability to detect extremely small forces and nanoscale displacements is vital for disciplines such as precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN Hz(-1/2) (refs 6,7) through coupling of nanomechanical resonators to a variety of physical readout systems. Here, we demonstrate that crystals of trapped atomic ions behave as nanoscale mechanical oscillators and may form the core of exquisitely sensitive force and displacement detectors. We report the detection of forces with a sensitivity of 390 +/- 150 yN Hz(-1/2), which is more than three orders of magnitude better than existing reports using nanofabricated devices(7), and discriminate ion displacements of approximately 18 nm. Our technique is based on the excitation of tunable normal motional modes in an ion trap and detection through phase-coherent Doppler velocimetry, and should ultimately allow force detection with a sensitivity better than 1 yN Hz(-1/2) (ref. 16). Trapped-ion-based sensors could enable scientists to explore new regimes in materials science where augmented force, field and displacement sensitivity may be traded against reduced spatial resolution.

12.
Phys Rev Lett ; 103(4): 040501, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19659335

ABSTRACT

Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, ;{9}Be;{+} ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can.

13.
Nature ; 458(7241): 996-1000, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19396139

ABSTRACT

Any quantum system, such as those used in quantum information or magnetic resonance, is subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement. In the context of quantum information, quantum error correction techniques have been developed to correct these errors, but resource requirements are extraordinary. The realization of a physically tractable quantum information system will therefore be facilitated if qubit (quantum bit) error rates are far below the so-called fault-tolerance error threshold, predicted to be of the order of 10(-3)-10(-6). The need to realize such low error rates motivates a search for alternative strategies to suppress dephasing in quantum systems. Here we experimentally demonstrate massive suppression of qubit error rates by the application of optimized dynamical decoupling pulse sequences, using a model quantum system capable of simulating a variety of qubit technologies. We demonstrate an analytically derived pulse sequence, UDD, and find novel sequences through active, real-time experimental feedback. The latter sequences are tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment, and are capable of suppressing errors by orders of magnitude compared to other existing sequences (including the benchmark multi-pulse spin echo). Our work includes the extension of a treatment to predict qubit decoherence under realistic conditions, yielding strong agreement between experimental data and theory for arbitrary pulse sequences incorporating nonidealized control pulses. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...