Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 272: 116465, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718623

ABSTRACT

Vector-borne diseases, constituting over 17 % of infectious diseases, are caused by parasites, viruses, and bacteria, and their prevalence is shaped by environmental and social factors. Dengue virus (DENV) and Zika virus (ZIKV), some of the most prevalent infectious agents of this type of diseases, are transmitted by mosquitoes belonging to the genus Aedes. The highest prevalence is observed in tropical regions, inhabited by around 3 billion people. DENV infects millions of people annually and constitutes an additional sanitary challenge due to the circulation of four serotypes, which has complicated vaccine development. ZIKV causes large outbreaks globally and its infection is known to lead to severe neurological diseases, including microcephaly in newborns. Besides, not only mosquito control programs have proved to be not totally effective, but also, no antiviral drugs have been developed so far. The envelope protein (E) is a major component of DENV and ZIKV virion surface. This protein plays a key role during the virus cell entry, constituting an attractive target for the development of antiviral drugs. Our previous studies have identified two pyrimidine analogs (3e and 3h) as inhibitors; however, their activity was found to be hindered by their low water solubility. In this study, we performed a low-throughput antiviral screening, revealing compound 16a as a potent DENV-2 and ZIKV inhibitor (EC50 = 1.4 µM and 2.4 µM, respectively). This work was aimed at designing molecules with improved selectivity and pharmacokinetic properties, thus advancing the antiviral efficacy of compounds for potential therapeutic use.


Subject(s)
Antiviral Agents , Dengue Virus , Drug Discovery , Pyrimidines , Zika Virus , Zika Virus/drug effects , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Virus Internalization/drug effects , Chlorocebus aethiops , Vero Cells
2.
Virology ; 590: 109968, 2024 02.
Article in English | MEDLINE | ID: mdl-38141499

ABSTRACT

Bovine viral diarrhea virus (BVDV) is known to cause financial losses and decreased productivity in the cattle industry worldwide. Currently, there are no available antiviral treatments for effectively controlling BVDV infections in laboratories or farms. The BVDV envelope protein (E2) mediates receptor recognition on the cell surface and is required for fusion of virus and cell membranes after the endocytic uptake of the virus during the entry process. Therefore, E2 is an attractive target for the development of antiviral strategies. To identify BVDV antivirals targeting E2 function, we defined a binding site in silico located in domain IIIc at the interface between monomers in the disulfide linked dimer of E2. Employing a de novo design methodology to identify compounds with the potential to inhibit the E2 function, compound 9 emerged as a promising candidate with remarkable antiviral activity and minimal toxicity. In line with targeting of E2 function, compound 9 was found to block the virus entry into host cells. Furthermore, we demonstrated that compound 9 selectively binds to recombinant E2 in vitro. Molecular dynamics simulations (MD) allowed describing a possible interaction pattern between compound 9 and E2 and indicated that the S enantiomer of compound 9 may be responsible for the antiviral activity. Future research endeavors will focus on synthesizing enantiomerically pure compounds to further support these findings. These results highlight the usefulness of de novo design strategies to identify a novel class of BVDV inhibitors that block E2 function inhibiting virus entry into the host cell.


Subject(s)
Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Animals , Cattle , Viral Envelope Proteins/metabolism , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Virus 1, Bovine Viral/metabolism , Antiviral Agents/pharmacology
3.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311034

ABSTRACT

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Subject(s)
Mammals , Polyphosphates , Animals , Substrate Specificity , Phosphorylation , Catalytic Domain , Dimerization
4.
Methods Mol Biol ; 2675: 117-132, 2023.
Article in English | MEDLINE | ID: mdl-37258760

ABSTRACT

Glutathione (GSH) is one of the main antioxidant molecules present in cells. It harbors a thiol group responsible for sustaining cellular redox homeostasis. This moiety can react with cellular electrophiles such as formaldehyde yielding the compound S-hydroxymethyl-GSH (HSMGSH). HSMGSH is the substrate of the enzyme alcohol dehydrogenase 5 (ADH5) and thus a key intermediate in formaldehyde metabolism. In this work, we describe a method for the chemical synthesis of HSMGSH and a pipeline to identify this compound in complex cell extracts by means of ultra-high-performance liquid chromatography coupled to high-resolution spectrometry (UHPLC-HRMS). This method also allows determining GSH and oxidized disulfide (GSSG) in the same samples, thus providing broad information about formaldehyde-GSH metabolism.


Subject(s)
Antioxidants , Glutathione , Humans , Glutathione Disulfide/chemistry , Chromatography, High Pressure Liquid/methods , Glutathione/metabolism , Antioxidants/metabolism , Sulfhydryl Compounds , Oxidation-Reduction
5.
ACS Appl Polym Mater ; 4(6): 4144-4153, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35720671

ABSTRACT

The increasing resistance of pathogenic microorganisms against common treatments requires innovative concepts to prevent infection and avoid long-term microbe viability on commonly used surfaces. Here, we report the preparation of a hybrid antimicrobial material based on the combination of microbiocidal polyoxometalate-ionic liquids (POM-ILs) and a biocompatible polymeric support, which enables the development of surface coatings that prevent microbial adhesion. The composite material is based on an antibacterial and antifungal room-temperature POM-IL composed of guanidinium cations (N,N,N',N'-tetramethyl-N″, N″-dioctylguanidinum) combined with lacunary Keggin-type polyoxotungstate anions, [α-SiW11O39]8-. Integration of the antimicrobial POM-IL into the biocompatible, flexible, and stable polymer poly(methyl methacrylate) (PMMA) results in processable films, which are suitable as surface coatings or packaging materials to limit the proliferation and spread of pathogenic microorganisms (e.g., on public transport and hospital surfaces, or in ready-to-eat-food packaging).

6.
Front Mol Biosci ; 9: 805187, 2022.
Article in English | MEDLINE | ID: mdl-35237658

ABSTRACT

Reverse transcriptase (RT) from the human immunodeficiency virus continues to be an attractive drug target for antiretroviral therapy. June 2022 will commemorate the 30th anniversary of the first Human Immunodeficiency Virus (HIV) RT crystal structure complex that was solved with non-nucleoside reverse transcriptase inhibitor nevirapine. The release of this structure opened opportunities for designing many families of non-nucleoside reverse transcriptase inhibitors (NNRTIs). In paying tribute to the first RT-nevirapine structure, we have developed several compound classes targeting the non-nucleoside inhibitor binding pocket of HIV RT. Extensive analysis of crystal structures of RT in complex with the compounds informed iterations of structure-based drug design. Structures of seven additional complexes were determined and analyzed to summarize key interactions with residues in the non-nucleoside inhibitor binding pocket (NNIBP) of RT. Additional insights comparing structures with antiviral data and results from molecular dynamics simulations elucidate key interactions and dynamics between the nucleotide and non-nucleoside binding sites.

7.
Nat Commun ; 13(1): 745, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136057

ABSTRACT

Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Caenorhabditis elegans Proteins/metabolism , Fanconi Anemia/metabolism , Formaldehyde/toxicity , Glutathione/metabolism , Aldehyde Oxidoreductases/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA Damage , Disease Models, Animal , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Formaldehyde/metabolism , Gene Knockout Techniques , HCT116 Cells , Humans , Oxidation-Reduction , Oxidative Stress
8.
Curr Med Chem ; 29(4): 719-740, 2022.
Article in English | MEDLINE | ID: mdl-34036904

ABSTRACT

Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on the control of this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets are an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties, such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.


Subject(s)
Dengue Virus , Dengue , Hepatitis C, Chronic , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Hepatitis C, Chronic/drug therapy , Humans , Mosquito Vectors
9.
Front Chem ; 9: 714678, 2021.
Article in English | MEDLINE | ID: mdl-34354979

ABSTRACT

The development of computational models for assessing the transfer of chemicals across the placental membrane would be of the utmost importance in drug discovery campaigns, in order to develop safe therapeutic options. We have developed a low-dimensional machine learning model capable of classifying compounds according to whether they can cross or not the placental barrier. To this aim, we compiled a database of 248 compounds with experimental information about their placental transfer, characterizing each compound with a set of ∼5.4 thousand descriptors, including physicochemical properties and structural features. We evaluated different machine learning classifiers and implemented a genetic algorithm, in a five cross validation scheme, to perform feature selection. The optimization was guided towards models displaying a low number of false positives (molecules that actually cross the placental barrier, but are predicted as not crossing it). A Linear Discriminant Analysis model trained with only four structural features resulted to be robust for this task, exhibiting only one false positive case across all testing folds. This model is expected to be useful in predicting placental drug transfer during pregnancy, and thus could be used as a filter for chemical libraries in virtual screening campaigns.

10.
ACS Infect Dis ; 7(6): 1503-1518, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34048233

ABSTRACT

The worldwide expansion of chikungunya virus (CHIKV) into tropical and subtropical areas in the last 15 years has posed a currently unmet need for vaccines and therapeutics. The E2-E1 envelope glycoprotein complex binds receptors on the host cell and promotes membrane fusion during CHIKV entry, thus constituting an attractive target for the development of antiviral drugs. In order to identify CHIKV antivirals acting through inhibition of the envelope glycoprotein complex function, our first approach was to search for amenable druggable sites within the E2-E1 heterodimer. We identified a pocket located in the interface between E2 and E1 around the fusion loop. Then, via a structure-based virtual screening approach and in vitro assay of antiviral activity, we identified compound 7 as a specific inhibitor of CHIKV. Through a lead optimization process, we obtained compound 11 that demonstrated increased antiviral activity and low cytotoxicity (EC50 1.6 µM, CC50 56.0 µM). Molecular dynamics simulations were carried out and described a possible interaction pattern of compound 11 and the E1-E2 dimer that could be useful for further optimization. As expected from target site selection, compound 11 inhibited virus internalization during CHIKV entry. In addition, virus populations resistant to compound 11 included mutation E2-P173S, which mapped to the proposed binding pocket, and second site mutation E1-Y24H. Construction of recombinant viruses showed that these mutations conferred antiviral resistance in the parental background. Finally, compound 11 presents acceptable solubility values and is chemically and enzymatically stable in different media. Altogether, these findings uncover a suitable pocket for the design of CHIKV entry inhibitors with promising antiviral activity and pharmacological profiles.


Subject(s)
Chikungunya virus , Drug Design , Viral Envelope Proteins/antagonists & inhibitors , Chikungunya virus/drug effects , Viral Envelope , Viral Envelope Proteins/genetics
11.
ChemMedChem ; 16(17): 2727-2730, 2021 09 06.
Article in English | MEDLINE | ID: mdl-33908695

ABSTRACT

Polyoxometalates (POMs), molecular metal oxide anions, are inorganic clusters with promising antiviral activity. Herein we report increased anti-HIV-1 activity of a POM when electrostatically combined with organic counter-cations. To this end, Keggin-type cerium tungstate POMs have been combined with organic methyl-caffeinium (Caf) cations, and their cytotoxicity, antiviral activity and mode of action have been studied. The novel compound, Caf4 K[ß2 -CeSiW11 O39 ]×H2 O, exhibits sub-nanomolar antiviral activity and inhibits HIV-1 infectivity by acting on an early step of the viral infection cycle. This work demonstrates that combination of POM anions and organic bioactive cations can be a powerful new strategy to increase antiviral activity of these inorganic compounds.


Subject(s)
Anions/pharmacology , Anti-HIV Agents/pharmacology , Caffeine/pharmacology , HIV/drug effects , Polyelectrolytes/pharmacology , Anions/chemical synthesis , Anions/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Caffeine/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Polyelectrolytes/chemical synthesis , Polyelectrolytes/chemistry
12.
RSC Adv ; 11(56): 35383-35391, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35424265

ABSTRACT

The use of high-throughput docking (HTD) in the drug discovery pipeline is today widely established. In spite of methodological improvements in docking accuracy (pose prediction), scoring power, ranking power, and screening power in HTD remain challenging. In fact, pose prediction is of critical importance in view of the pose-dependent scoring process, since incorrect poses will necessarily decrease the ranking power of scoring functions. The combination of results from different docking programs (consensus scoring) has been shown to improve the performance of HTD. Moreover, it has been also shown that a pose consensus approach might also result in database enrichment. We present a new methodology named Pose/Ranking Consensus (PRC) that combines both pose and ranking consensus approaches, to overcome the limitations of each stand-alone strategy. This approach has been developed using four docking programs (ICM, rDock, Auto Dock 4, and PLANTS; the first one is commercial, the other three are free). We undertook a thorough analysis for the best way of combining pose and rank strategies, and applied the PRC to a wide range of 34 targets sampling different protein families and binding site properties. Our approach exhibits an improved systematic performance in terms of enrichment factor and hit rate with respect to either pose consensus or consensus ranking alone strategies at a lower computational cost, while always ensuring the recovery of a suitable number of ligands. An analysis using four free docking programs (replacing ICM by Auto Dock Vina) displayed comparable results.

14.
J Med Chem ; 63(8): 4370-4387, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32227948

ABSTRACT

Chlamydia trachomatis is the most common sexually transmitted bacterial disease globally and the leading cause of infertility and preventable infectious blindness (trachoma) in the world. Unfortunately, there is no FDA-approved treatment specific for chlamydial infections. We recently reported two sulfonylpyridines that halt the growth of the pathogen. Herein, we present a SAR of the sulfonylpyridine molecule by introducing substituents on the aromatic regions. Biological evaluation studies showed that several analogues can impair the growth of C. trachomatis without affecting host cell viability. The compounds did not kill other bacteria, indicating selectivity for Chlamydia. The compounds presented mild toxicity toward mammalian cell lines. The compounds were found to be nonmutagenic in a Drosophila melanogaster assay and exhibited a promising stability in both plasma and gastric fluid. The presented results indicate this scaffold is a promising starting point for the development of selective antichlamydial drugs.


Subject(s)
Chlamydia trachomatis/drug effects , Peptide Hydrolases/metabolism , Protease Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Animals , Cell Survival/drug effects , Cell Survival/physiology , Chlamydia trachomatis/physiology , Chlorobenzenes/chemical synthesis , Chlorobenzenes/pharmacology , Dose-Response Relationship, Drug , Drosophila melanogaster , HeLa Cells , Humans , Mice , Protease Inhibitors/pharmacology , Pyridines/pharmacology
15.
Front Chem ; 8: 590235, 2020.
Article in English | MEDLINE | ID: mdl-33425849

ABSTRACT

Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus (Flaviviridae). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, N-(2-morpholinoethyl)-2-phenylquinazolin-4-amine [1, 50% effective concentration (EC50) = 9.7 ± 0.5 µM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (1.9; EC50 = 1.7 ± 0.4 µM) for further analysis. Compound 1.9 was found to inhibit the in vitro replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, 1.9 presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.

16.
Eur J Med Chem ; 182: 111628, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31472473

ABSTRACT

Dengue fever is a mosquito-borne viral disease that has become a major public health concern worldwide. This disease presents with a wide range of clinical manifestations, from a mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, neither an approved drug nor an effective vaccine for the treatment are available to fight the disease. The envelope protein (E) is a major component of the virion surface. This protein plays a key role during the viral entry process, constituting an attractive target for the development of antiviral drugs. The crystal structure of the E protein reveals the existence of a hydrophobic pocket occupied by the detergent n-octyl-ß-d-glucoside (ß-OG). This pocket lies at the hinge region between domains I and II and is important for the low pH-triggered conformational rearrangement required for the fusion of the virion with the host's cell. Aiming at the design of novel molecules which bind to E and act as virus entry inhibitors, we undertook a de novo design approach by "growing" molecules inside the hydrophobic site (ß-OG). From more than 240000 small-molecules generated, the 2,4 pyrimidine scaffold was selected as the best candidate, from which one synthesized compound displayed micromolar activity. Molecular dynamics-based optimization was performed on this hit, and thirty derivatives were designed in silico, synthesized and evaluated on their capacity to inhibit dengue virus entry into the host cell. Four compounds were found to be potent antiviral compounds in the low-micromolar range. The assessment of drug-like physicochemical and in vitro pharmacokinetic properties revealed that compounds 3e and 3h presented acceptable solubility values and were stable in mouse plasma, simulated gastric fluid, simulated intestinal fluid, and phosphate buffered saline solution.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Drug Design , Small Molecule Libraries/pharmacology , Viral Envelope Proteins/antagonists & inhibitors , A549 Cells , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Dengue Virus/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Solubility , Structure-Activity Relationship , Viral Envelope Proteins/metabolism
17.
Med Chem ; 15(3): 265-276, 2019.
Article in English | MEDLINE | ID: mdl-30295191

ABSTRACT

BACKGROUND: Chagas disease affects about 7 million people worldwide. Only two drugs are currently available for the treatment for this parasite disease, namely, benznidazol (Bzn) and nifurtimox (Nfx). Both drugs have limited curative power in the chronic phase of the disease. Therefore, continuous research is an urgent need so as to discover novel therapeutic alternatives. OBJECTIVE: The development of safer and more efficient therapeutic anti-T. cruzi drugs continues to be a major goal in trypanocidal chemotherapy. METHOD: Synthesis, 2D-QSAR and drug-like physicochemical properties of a set of quinazolinone and quinazoline derivatives were studied as trypanocidal agents. All compounds were screened in vitro against Trypanosoma cruzi (Tulahuen strain, Tul 2 stock) epimastigotes and bloodstream trypomastigotes. RESULTS: Out of 34 compounds synthesized and tested, six compounds (5a, 5b, 9b, 9h, 13f and 13p) displayed significant activity against both epimastigotes and tripomastigotes, without exerting toxicity on Vero cells. CONCLUSION: The antiprotozoal activity of these quinazolinone and quinazoline derivatives represents an interesting starting point for a medicinal chemistry program aiming at the development of novel chemotherapies for Chagas disease.


Subject(s)
Quantitative Structure-Activity Relationship , Quinazolines/chemistry , Quinazolines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Chlorocebus aethiops , Inhibitory Concentration 50 , Proton Magnetic Resonance Spectroscopy , Quinazolines/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Trypanocidal Agents/chemical synthesis , Vero Cells
18.
Med Res Rev ; 39(4): 1235-1273, 2019 07.
Article in English | MEDLINE | ID: mdl-30417402

ABSTRACT

The type I human immunodeficiency virus (HIV-1) pandemic affecting over 37 million people worldwide continues, with 1.8 million people newly infected each year. Highly active antiretroviral therapy is efficient at reducing viral load and nearly one-half of the infected population is on treatment. One of the most successful approaches for the treatment of HIV infections is the use of inhibitors for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT). At present, there are six nonnucleoside reverse transcriptase inhibitors (NNRTIs) approved for clinical use: nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETV), rilpivirine (RPV), and elsulfavirine. In this review, we will cover the development of different classes of NNRTIs over the last two decades. We will give an overview of traditional medicinal chemistry strategies for structural modification as bioisosterism principles, scaffold hopping, substitute decoration, and molecular hybridization. Furthermore, computer-aid design as virtual screening, de novo design and free-energy perturbation will be described in details.


Subject(s)
Drug Discovery , HIV-1/drug effects , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Computer-Aided Design , Databases, Chemical , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests
19.
Bioorg Med Chem Lett ; 29(2): 262-266, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30501966

ABSTRACT

Bovine viral diarrhea virus (BVDV) is a pestivirus whose infection in cattle is globally distributed. The use of antivirals could complement vaccination as a tool of control and reduce economic losses. The RNA-dependent RNA polymerase (RdRp) of the virus is essential for its genome replication and constitutes an attractive target for the identification of antivirals. With the aim of obtaining selective BVDV inhibitors, the crystal structure of BVDV RdRp was used to perform a virtual screening. Approximately 15,000 small molecules from commercial and in-house databases were evaluated and several structurally different compounds were tested in vitro for antiviral activity. Interestingly, of twelve evaluated compounds, five were active and displayed EC50 values in the sub and low-micromolar range. Time of drug addition experiment and measured intracellular BVDV RNA showed that compound 7 act during RNA synthesis. Molecular Dynamics and MM/PBSA calculation were done to characterize the interaction of the most active compounds with RdRp, which will allow future ligand optimization. These studies highlight the use of in silico screening to identify a new class of BVDV inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Diarrhea Viruses, Bovine Viral/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cattle , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
20.
Front Chem ; 6: 79, 2018.
Article in English | MEDLINE | ID: mdl-29632860

ABSTRACT

Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus within the family Flaviviridae. BVDV causes both acute and persistent infections in cattle, leading to substantial financial losses to the livestock industry each year. The global prevalence of persistent BVDV infection and the lack of a highly effective antiviral therapy have spurred intensive efforts to discover and develop novel anti-BVDV therapies in the pharmaceutical industry. Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. We performed prospective small-molecule high-throughput docking to identify molecules that likely bind to the region delimited by domains I and II of the envelope protein E2 of BVDV. Several structurally different compounds were purchased or synthesized, and assayed for antiviral activity against BVDV. Five of the selected compounds were active displaying IC50 values in the low- to mid-micromolar range. For these compounds, their possible binding determinants were characterized by molecular dynamics simulations. A common pattern of interactions between active molecules and aminoacid residues in the binding site in E2 was observed. These findings could offer a better understanding of the interaction of BVDV E2 with these inhibitors, as well as benefit the discovery of novel and more potent BVDV antivirals.

SELECTION OF CITATIONS
SEARCH DETAIL
...