Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(3): e0169823, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38349190

ABSTRACT

Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE: Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.


Subject(s)
Ammonium Compounds , Archaea , Ammonia , Nitrites , Nitrates , Bacteria , Nitrification , Oxidation-Reduction , Lakes , Phylogeny
2.
Microbiol Resour Announc ; 13(2): e0090023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265223

ABSTRACT

Two metagenome-assembled genomes (MAGs) were recovered from the ammonia-oxidizing enrichment culture BO1 obtained from the sediment of the freshwater reservoir Lake Burr Oak, Ohio, USA. High quality MAGs were assembled for the archaeal ammonia oxidizer Nitrosarchaeum sp. BO1 and the canonical nitrite oxidizer Nitrospira sp. BO1.

3.
Appl Environ Microbiol ; 89(2): e0196522, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719237

ABSTRACT

Complete ammonia oxidizers (comammox) are a group of ubiquitous chemolithoautotrophic bacteria capable of deriving energy from the oxidation of ammonia to nitrate via nitrite. Here, we present a study characterizing the comammox strain Nitrospira sp. BO4 using a combination of cultivation-dependent and molecular methods. The enrichment culture BO4 was obtained from the sediment of Lake Burr Oak, a mesotrophic lake in eastern Ohio. The metagenome of the enrichment culture was sequenced, and a metagenome-assembled genome (MAG) was constructed for Nitrospira sp. BO4. The closest characterized relative of Nitrospira sp. BO4 was "Candidatus Nitrospira kreftii." All genes for ammonia and nitrite oxidation, reductive tricarboxylic acid (TCA) cycle, and other pathways of the central metabolism were detected. Nitrospira sp. BO4 used ammonia and oxidized it to nitrate with nitrite as the intermediate. The culture grew on initial ammonium concentrations between 0.01 and 3 mM with the highest rates observed at the lowest ammonium concentrations. Blue light completely inhibited the growth of Nitrospira sp. BO4, while white light reduced the growth and red light had no effect on the growth. Nitrospira sp. BO4 did not grow on nitrite as its sole substrate. When supplied with ammonium and nitrite, the culture utilized nitrite after most of the ammonium was consumed. In summary, the genomic information of Nitrospira sp. BO4 coupled with the growth experiments shows that Nitrospira sp. BO4 is a freshwater comammox species. Future research will focus on further characterization of the niches of comammox in freshwater environments. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Complete ammonia oxidizers (comammox) were discovered recently, and only three enrichment cultures and one pure culture have been characterized with respect to activity and growth under different conditions. The cultivated comammox strains were obtained from engineered systems such as a recirculating aquaculture system and hot water pipes. Here, we present the first study characterizing a comammox strain obtained from a mesotrophic freshwater lake. In freshwater environments, comammox coexist with ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results will help elucidate physiological characteristics of comammox and the distribution and niche differentiation of different ammonia oxidizers in freshwater environments.


Subject(s)
Ammonia , Ammonium Compounds , Ammonia/metabolism , Nitrites/metabolism , Nitrates/metabolism , Bacteria/metabolism , Archaea/metabolism , Nitrification , Oxidation-Reduction , Genomics , Fresh Water , Ammonium Compounds/metabolism , Phylogeny
4.
Appl Environ Microbiol ; 87(20): e0103821, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34347515

ABSTRACT

In the environment, nutrients are rarely available in a constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen. We investigated the competition between highly enriched cultures of AOA (AOA-AC1) and AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis spp., and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. strain Is79, belonged to the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). Growth experiments in batch cultures showed that AOB-G5-7 had higher growth rates than AOA-AC1 at higher ammonium concentrations. During chemostat competition experiments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition between AOA and AOB was determined by the initial ammonium concentrations. AOA-AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of 50 µM, and AOB-G5-7 was dominant at 500 µM. These findings indicate that during direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are in strong accordance with environmental survey data suggesting that AOA are mainly responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB dominate under eutrophic conditions. IMPORTANCE Nitrification is an important process in the global nitrogen cycle. The first step, ammonia oxidation to nitrite, can be carried out by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In many natural environments, these ammonia oxidizers coexist. Therefore, it is important to understand the population dynamics in response to increasing ammonium concentrations. Here, we study the competition between AOA and AOB enriched from freshwater systems. The results demonstrate that AOA are more abundant in systems with low ammonium availabilities and that AOB are more abundant when the ammonium availability increases. These results will help to predict potential shifts in the community composition of ammonia oxidizers in the environment due to changes in ammonium availability.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Fresh Water/microbiology , Microbial Interactions , Nitrosomonas/metabolism , Archaea/genetics , Archaea/growth & development , Nitrosomonas/genetics , Nitrosomonas/growth & development , Oxidation-Reduction , Phylogeny
5.
Dalton Trans ; 50(12): 4345-4354, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33690749

ABSTRACT

Chromium(iii) complexes of chelating diphosphines, with PNP or PCNCP backbones, are excellent catalysts for ethylene tetra- and/or trimerisations. A missing link within this ligand series are unsymmetric chelating diphosphines based on a PCNP scaffold. New bidentate PCNP ligands of the type Ph2PCH2N(R)PPh2 (R = 1-naphthyl or 5-quinoline groups, 2a-d) have been synthesised and shown to be extremely effective ligands for ethylene tri-/tetramerisations. Three representative tetracarbonyl Cr0 complexes bearing a single PN(R)P (5), PCN(R)P (6), or PCN(R)CP (7) diphosphine (R = 1-naphthyl) have been prepared from Cr(CO)4(η4-nbd) (nbd = norbornadiene). Furthermore we report a single crystal X-ray diffraction study of these compounds and discuss their structural parameters.

6.
ISME J ; 14(10): 2595-2609, 2020 10.
Article in English | MEDLINE | ID: mdl-32636492

ABSTRACT

Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats.


Subject(s)
Ammonia , Archaea , Archaea/genetics , Nitrification , Nutrients , Oxidation-Reduction , Phylogeny
7.
Microb Ecol ; 78(4): 985-994, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30976841

ABSTRACT

Ammonia-oxidizing bacteria (AOB) within the genus Nitrosomonas perform the first step in nitrification, ammonia oxidation, and are found in diverse aquatic and terrestrial environments. Nitrosomonas AOB were grouped into six defined clusters, which correlate with physiological characteristics that contribute to adaptations to a variety of abiotic environmental factors. A fundamental physiological trait differentiating Nitrosomonas AOB is the adaptation to either low (cluster 6a) or high (cluster 7) ammonium concentrations. Here, we present physiological growth studies and genome analysis of Nitrosomonas cluster 6a and 7 AOB. Cluster 6a AOB displayed maximum growth rates at ≤ 1 mM ammonium, while cluster 7 AOB had maximum growth rates at ≥ 5 mM ammonium. In addition, cluster 7 AOB were more tolerant of high initial ammonium and nitrite concentrations than cluster 6a AOB. Cluster 6a AOB were completely inhibited by an initial nitrite concentration of 5 mM. Genomic comparisons were used to link genomic traits to observed physiological adaptations. Cluster 7 AOB encode a suite of genes related to nitrogen oxide detoxification and multiple terminal oxidases, which are absent in cluster 6a AOB. Cluster 6a AOB possess two distinct forms of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and select species encode genes for hydrogen or urea utilization. Several, but not all, cluster 6a AOB can utilize urea as a source of ammonium. Hence, although Nitrosomonas cluster 6a and 7 AOB have the capacity to fulfill the same functional role in microbial communities, i.e., ammonia oxidation, differentiating species-specific and cluster-conserved adaptations is crucial in understanding how AOB community succession can affect overall ecosystem function.


Subject(s)
Genome, Bacterial/physiology , Nitrosomonas/physiology , Ammonia/metabolism , Nitrosomonas/genetics , Oxidation-Reduction , Phylogeny
8.
ISME J ; 13(8): 1997-2004, 2019 08.
Article in English | MEDLINE | ID: mdl-30936420

ABSTRACT

Anaerobic ammonia-oxidizing (Anammox) bacteria (AnAOB) rely on nitrite supplied by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Affinities for ammonia and oxygen play a crucial role in AOA/AOB competition and their association with AnAOB. In this work we measured the affinity constants for ammonia and oxygen (half-saturation; km) of two freshwater AOA enrichments, an AOA soil isolate (N. viennensis), and a freshwater AnAOB enrichment. The AOA enrichments had similar kinetics (µmax ≈ 0.36 d-1, km,NH4 ≈ 0.78 µM, and km,O2 ≈ 2.9 µM), whereas N. viennensis had similar km values but lower µmax (0.23 d-1). In agreement with the current paradigm, these AOA strains showed a higher affinity for ammonia (lower km,NH4; 0.34-1.27 µM) than published AOB measurements (>20 µM). The slower growing AnAOB (µmax ≈ 0.16 d-1) had much higher km values (km,NH4 ≈ 132 µM, km,NO2 ≈ 48 µM) and were inhibited by oxygen at low levels (half-oxygen inhibition; ki,O2 ≈ 0.092 µM). The higher affinity of AOA for ammonia relative to AnAOB, suggests AOA/AnAOB cooperation is only possible where AOA do not outcompete AnAOB for ammonia. Using a biofilm model, we show that environments of ammonia/oxygen counter diffusion, such as stratified lakes, favors this cooperation.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Ammonia/chemistry , Ammonia/metabolism , Anaerobiosis , Archaea/chemistry , Archaea/classification , Archaea/isolation & purification , Bacteria/chemistry , Bacteria/classification , Bacteria/isolation & purification , Kinetics , Lakes/microbiology , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Soil/chemistry , Soil Microbiology
9.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30948472

ABSTRACT

Asinibacterium sp. strains OR43 and OR53 belong to the phylum Bacteroidetes and were isolated from subsurface sediments in Oak Ridge, TN. Both strains grow at elevated levels of heavy metals. Here, we present the closed genome sequence of Asinibacterium sp. strain OR53 and the draft genome sequence of Asinibacterium sp. strain OR43.

10.
Genome Announc ; 5(11)2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28302769

ABSTRACT

Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

11.
Stand Genomic Sci ; 11: 46, 2016.
Article in English | MEDLINE | ID: mdl-27471578

ABSTRACT

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.

12.
Appl Environ Microbiol ; 82(15): 4776-4788, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27235442

ABSTRACT

UNLABELLED: Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE: Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community.


Subject(s)
Ammonia/metabolism , Nitrobacter/metabolism , Nitrosomonas/growth & development , Nitrosomonas/metabolism , Proteome/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coculture Techniques , Heterotrophic Processes , Nitrites/metabolism , Nitrobacter/genetics , Nitrosomonas/genetics , Proteome/metabolism
13.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Article in English | MEDLINE | ID: mdl-26676055

ABSTRACT

In the environment, microorganisms are living in diverse communities, which are impacted by the prevailing environmental conditions. Here, we present a study investigating the effect of low pH and elevated uranium concentration on the dynamics of an artificial microbial consortium. The members (Caulobacter sp. OR37, Asinibacterium sp. OR53, Ralstonia sp. OR214 and Rhodanobacter sp. OR444) were isolated from a uranium contaminated and acidic subsurface sediment. In pure culture, Ralstonia sp. OR214 had the highest growth rate at neutral and low pH and only Caulobacter sp. OR37 and Asinibacterium sp. OR53 grew in the presence uranium. The four strains were mixed in equal ratios, incubated at neutral and low pH and in the presence uranium and transferred to fresh medium once per week for 30 weeks. After 30 weeks, Ralstonia sp. OR214 was dominant at low and neutral pH and Caulobacter sp. OR37 and Asinibacterium sp. OR53 were dominant in the presence of uranium. After 12 weeks, the cultures were also transferred to new conditions to access the response of the consortia to changing conditions. The transfers showed an irreversible effect of uranium, but not of low pH on the consortia. Overall, the strains initially tolerant to the respective conditions persisted over time in high abundances in the consortia.


Subject(s)
Bacteroidetes/growth & development , Caulobacter/growth & development , Gammaproteobacteria/growth & development , Microbial Consortia/drug effects , Ralstonia/growth & development , Uranium/pharmacology , Bacteroidetes/drug effects , Bacteroidetes/isolation & purification , Caulobacter/drug effects , Caulobacter/isolation & purification , Gammaproteobacteria/drug effects , Gammaproteobacteria/isolation & purification , Hydrogen-Ion Concentration , Ralstonia/drug effects , Ralstonia/isolation & purification , Time
14.
Life (Basel) ; 5(2): 1396-404, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25997109

ABSTRACT

In their natural habitats, microorganisms are often exposed to periods of starvation if their substrates for energy generation or other nutrients are limiting. Many microorganisms have developed strategies to adapt to fluctuating nutrients and long-term starvation. In the environment, ammonia oxidizers have to compete with many different organisms for ammonium and are often exposed to long periods of ammonium starvation. We investigated the effect of ammonium starvation on ammonia-oxidizing archaea (AOA) and bacteria (AOB) enriched from freshwater lake sediments. Both AOA and AOB were able to recover even after almost two months of starvation; however, the recovery time differed. AOA and AOB retained their 16S rRNA (ribosomes) throughout the complete starvation period. The AOA retained also a small portion of the mRNA of the ammonia monooxygenase subunit A (amoA) for the complete starvation period. However, after 10 days, no amoA mRNA was detected anymore in the AOB. These results indicate that AOA and AOB are able to survive longer periods of starvation, but might utilize different strategies.

15.
PLoS One ; 9(5): e97068, 2014.
Article in English | MEDLINE | ID: mdl-24819357

ABSTRACT

Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b) where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a) and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA) showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.


Subject(s)
Ammonia/metabolism , Archaea/isolation & purification , Bacteria/isolation & purification , Biodiversity , Food Chain , Geologic Sediments/microbiology , Lakes/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , High-Throughput Nucleotide Sequencing , Oxidation-Reduction , Phylogeny
16.
Stand Genomic Sci ; 7(3): 469-82, 2013.
Article in English | MEDLINE | ID: mdl-24019993

ABSTRACT

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

17.
Genome Announc ; 1(3)2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23792748

ABSTRACT

Ralstonia sp. strain OR214 belongs to the class Betaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. A member of this genus has been described as a potential bioremediation agent. Strain OR214 is tolerant to various heavy metals, such as uranium, nickel, cobalt, and cadmium. We present its draft genome sequence here.

18.
Genome Announc ; 1(3)2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23792749

ABSTRACT

Caulobacter sp. strain OR37 belongs to the class Alphaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. Strain OR37 is noteworthy due to its tolerance to high concentrations of heavy metals, such as uranium, nickel, cobalt, and cadmium, and we present its draft genome sequence here.

19.
Plant Physiol Biochem ; 72: 190-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23545181

ABSTRACT

High molecular weight polyphenols (e.g. tannins) that enter the soil may affect microbial populations, by serving as substrates for microbial respiration or by selecting for certain microbes. In this study we examined how three phenolic compounds that represent some environmentally widespread tannins or their constituent functional groups were respired by soil microorganisms and how the compounds affected the abundance and diversity of soil bacteria and archaea, including ammonia oxidizers. An acidic, silt loam soil from a pine forest was incubated for two weeks with the monomeric phenol methyl gallate, the small polyphenol epigallocatechin gallate, or the large polyphenol oenothein B. Respiration of the polyphenols during the incubation was measured using the Microresp™ system. After incubation, metabolic diversity was determined by community level physiological profiling (CLPP), and genetic diversity was determined using denaturing gradient gel electrophoresis (DGGE) analysis on DNA extracted from the soil samples. Total microbial populations and ammonia-oxidizing populations were measured using real time quantitative polymerase chain reaction (qPCR). Methyl gallate was respired more efficiently than the higher molecular weight tannins but not as efficiently as glucose. Methyl gallate and epigallocatechin gallate selected for genetically or physiologically unique populations compared to glucose. None of the polyphenols supported microbial growth, and none of the polyphenols affected ammonia-oxidizing bacterial populations or ammonia-oxidizing archaea. Additional studies using both a wider range of polyphenols and a wider range of soils and environments are needed to elucidate the role of polyphenols in determining soil microbiological diversity.


Subject(s)
Polyphenols/pharmacology , Archaea/drug effects , Bacteria/drug effects , Polyphenols/chemistry , Soil Microbiology , Tannins/chemistry , Tannins/pharmacology
20.
Appl Environ Microbiol ; 78(16): 5773-80, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22685142

ABSTRACT

Aerobic biological ammonia oxidation is carried out by two groups of microorganisms, ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). Here we present a study using cultivation-based methods to investigate the differences in growth of three AOA cultures and one AOB culture enriched from freshwater environments. The strain in the enriched AOA culture belong to thaumarchaeal group I.1a, with the strain in one enrichment culture having the highest identity with "Candidatus Nitrosoarchaeum koreensis" and the strains in the other two representing a new genus of AOA. The AOB strain in the enrichment culture was also obtained from freshwater and had the highest identity to AOB from the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). We investigated the influence of ammonium, oxygen, pH, and light on the growth of AOA and AOB. The growth rates of the AOB increased with increasing ammonium concentrations, while the growth rates of the AOA decreased slightly. Increasing oxygen concentrations led to an increase in the growth rate of the AOB, while the growth rates of AOA were almost oxygen insensitive. Light exposure (white and blue wavelengths) inhibited the growth of AOA completely, and the AOA did not recover when transferred to the dark. AOB were also inhibited by blue light; however, growth recovered immediately after transfer to the dark. Our results show that the tested AOB have a competitive advantage over the tested AOA under most conditions investigated. Further experiments will elucidate the niches of AOA and AOB in more detail.


Subject(s)
Ammonia/metabolism , Archaea/growth & development , Archaea/metabolism , Bacteria/growth & development , Bacteria/metabolism , Fresh Water/microbiology , Aerobiosis , Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Hydrogen-Ion Concentration , Light , Molecular Sequence Data , Oxidation-Reduction , Oxygen/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...