Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 102: 41-51, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27318446

ABSTRACT

A full-scale nitrifying biofilter was continuously monitored during two measurement periods (September 2014; February 2015) during which both gaseous and liquid N2O fluxes were monitored on-line. The results showed diurnal and seasonal variations of N2O emissions. A statistical model was run to determine the main operational parameters governing N2O emissions. Modification of the distribution between the gas phase and the liquid phase was observed related to the effects of temperature and aeration flow on the volumetric mass transfer coefficient (kLa). With similar nitrification performance values, the N2O emission factor was twice as high during the winter campaign. The increase in N2O emissions in winter was correlated to higher effluent nitrite concentrations and suspected increased biofilm thickness.


Subject(s)
Nitrification , Nitrous Oxide , Biofilms
2.
Sci Total Environ ; 563-564: 320-8, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27139304

ABSTRACT

In this study, nitrous oxide (N2O) emissions from a full-scale denitrifying biofilter plant were continuously monitored over two periods (summer campaign in September 2014 and winter campaign in February 2015). Results of the summer campaign showed that the major part (>99%) of N2O flux was found in the liquid phase and was discharged with the effluent. N2O emissions were highly variable and represented in average 1.28±1.99% and 0.22±0.31% of the nitrate uptake rate during summer and winter campaigns, respectively. Denitrification was able to consume a large amount of dissolved N2O coming from the upstream nitrification stage. In the absence of methanol injection failure and with an influent BOD/NO3-N ratio higher than 3, average reduction of N2O was estimated to be of 93%. The control of exogenous carbon dosage is essential to minimize N2O production from denitrifying biofilters, in correlation to NO2-N concentrations in the filter.


Subject(s)
Denitrification , Filtration , Nitrous Oxide/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bioreactors , France
3.
Bioresour Technol ; 147: 387-394, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24001563

ABSTRACT

An experimental procedure (Residence Time Distribution technique) was used to characterize the macro-mixing of both liquid and solid phases of a laboratory-scale dry anaerobic digester using appropriate tracers. The effects of the waste origin and total solid content were studied. An increase in TS content from 22% to 30% TS (w/w) induced a macro-mixing mode closer to a theoretical Plug Flow Reactor. The segregation of particles having different densities was investigated regarding the RTD of the solid phase. Segregation of dense particles occurred at low TS content. By using different TS content and waste origins, it was also determined that the yield stress was a key parameter in the mechanism of segregation. At high yield stress, dense particles were more stable and thus less subjected to settling. As a consequence, operating at high TS content may permit to prevent the sedimentation of the denser particles.


Subject(s)
Anaerobiosis , Culture Media
4.
Bioresour Technol ; 102(2): 822-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20863691

ABSTRACT

The objective of this study was to evaluate the influence of substrate concentration and moisture content on the specific methanogenic activity (SMA) of a fresh dry mesophilic digestate from a municipal solid waste digester plant. For this purpose, SMA tests were performed under mesophilic conditions into glass bottles of 500 mL volume used as batch reactors, during a period of 20-25 days. Propionate was used as substrate at concentrations ranging from 1 to 10 gCOD/kg. Four moisture contents were studied: 65%, 75%, 80% and 82%. Experimental results showed that propionate concentration and moisture content strongly influenced the SMA. The highest SMA was observed at a substrate concentration of 10 gCOD/kg (11.3 mgCOD gVS(-1) d(-1) for the second dose of propionate) and at a moisture content of 82% (7.8 mgCOD gVS(-1) d(-1) for the second dose of propionate, at a concentration of 5 gCOD/kg). SMA was found to decrease linearly when decreasing the moisture content.


Subject(s)
Bacteria/metabolism , Cities , Desiccation , Methane/analysis , Propionates/analysis , Refuse Disposal/methods , Water/analysis , Biodegradation, Environmental , Kinetics , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...