Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroinformatics ; 21(1): 101-113, 2023 01.
Article in English | MEDLINE | ID: mdl-35986836

ABSTRACT

We present here an online platform for sharing resources underlying publications in neuroscience. It enables authors to easily upload and distribute digital resources, such as data, code, and notebooks, in a structured and systematic way. Interactivity is a prominent feature of the Live Papers, with features to download, visualise or simulate data, models and results presented in the corresponding publications. The resources are hosted on reliable data storage servers to ensure long term availability and easy accessibility. All data are managed via the EBRAINS Knowledge Graph, thereby helping maintain data provenance, and enabling tight integration with tools and services offered under the EBRAINS ecosystem.


Subject(s)
Ecosystem , Neurosciences , Computational Biology/methods , Neurosciences/methods , Information Storage and Retrieval
2.
Front Neuroinform ; 15: 713899, 2021.
Article in English | MEDLINE | ID: mdl-34512300

ABSTRACT

The description of neural dynamics, in terms of precise characterizations of action potential timings and shape and voltage related measures, is fundamental for a deeper understanding of the neural code and its information content. Not only such measures serve the scientific questions posed by experimentalists but are increasingly being used by computational neuroscientists for the construction of biophysically detailed data-driven models. Nonetheless, online resources enabling users to perform such feature extraction operation are lacking. To address this problem, in the framework of the Human Brain Project and the EBRAINS research infrastructure, we have developed and made available to the scientific community the NeuroFeatureExtract, an open-access online resource for the extraction of electrophysiological features from neural activity data. This tool allows to select electrophysiological traces of interest, fetched from public repositories or from users' own data, and provides ad hoc functionalities to extract relevant features. The output files are properly formatted for further analysis, including data-driven neural model optimization.

3.
PLoS Comput Biol ; 17(1): e1008114, 2021 01.
Article in English | MEDLINE | ID: mdl-33513130

ABSTRACT

Anatomically and biophysically detailed data-driven neuronal models have become widely used tools for understanding and predicting the behavior and function of neurons. Due to the increasing availability of experimental data from anatomical and electrophysiological measurements as well as the growing number of computational and software tools that enable accurate neuronal modeling, there are now a large number of different models of many cell types available in the literature. These models were usually built to capture a few important or interesting properties of the given neuron type, and it is often unknown how they would behave outside their original context. In addition, there is currently no simple way of quantitatively comparing different models regarding how closely they match specific experimental observations. This limits the evaluation, re-use and further development of the existing models. Further, the development of new models could also be significantly facilitated by the ability to rapidly test the behavior of model candidates against the relevant collection of experimental data. We address these problems for the representative case of the CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, which makes it possible to automatically and systematically test multiple properties of models by making quantitative comparisons between the models and electrophysiological data. The tests cover various aspects of somatic behavior, and signal propagation and integration in apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare the behavior of several different rat hippocampal CA1 pyramidal cell models from the ModelDB database against electrophysiological data available in the literature, and evaluated how well these models match experimental observations in different domains. We also show how we employed the test suite to aid the development of models within the European Human Brain Project (HBP), and describe the integration of the tests into the validation framework developed in the HBP, with the aim of facilitating more reproducible and transparent model building in the neuroscience community.


Subject(s)
CA1 Region, Hippocampal , Electrophysiological Phenomena/physiology , Electrophysiology/methods , Models, Neurological , Software , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computational Biology , Dendrites/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Rats
4.
PLoS Comput Biol ; 14(9): e1006423, 2018 09.
Article in English | MEDLINE | ID: mdl-30222740

ABSTRACT

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.


Subject(s)
Hippocampus/physiology , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Electrophysiology , Male , Models, Neurological , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...