Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 7(3): e00484, 2019 06.
Article in English | MEDLINE | ID: mdl-31149340

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) gene have been pathogenically linked to Parkinson's disease, and pharmacological inhibition of LRRK2 is being pursued to tackle nigro-striatal dopaminergic neurodegeneration. However, LRRK2 kinase inhibitors may have manifold actions, affecting not only pathological mechanisms in dopaminergic neurons but also physiological functions in nondopaminergic neurons. Therefore, we investigated whether LRRK2 kinase inhibitors differentially modulate dopamine and glutamate release from the mouse striatum and cerebral cortex. Spontaneous and KCl-evoked [3H]-dopamine and glutamate release from superfused synaptosomes obtained from wild-type and LRRK2 knock-out, kinase-dead or G2019S knock-in mice was measured. Two structurally unrelated inhibitors, LRRK2-IN-1 and GSK2578215A, were tested. LRRK2, phosphoSerine1292 and phosphoSerine935 LRRK2 levels were measured in all genotypes, and target engagement was evaluated by monitoring phosphoSerine935 LRRK2. LRRK2-IN-1 inhibited striatal glutamate but not dopamine release; GSK2578215A inhibited striatal dopamine and cortical glutamate but enhanced striatal glutamate release. LRRK2-IN-1 reduced striatal and cortical phosphoSerine935 levels whereas GSK2578215A inhibited only the former. Neither LRRK2 inhibitor affected neurotransmitter release in LRRK2 knock-out and kinase-dead mice; however, they facilitated dopamine without affecting striatal glutamate in G2019S knock-in mice. GSK2578215A inhibited cortical glutamate release in G2019S knock-in mice. We conclude that LRRK2-IN-1 and GSK2578215A modulate exocytosis by blocking LRRK2 kinase activity, although their effects vary depending on the nerve terminal examined. The G2019S mutation unravels a dopamine-promoting action of LRRK2 inhibitors while blunting their effects on glutamate release, which highlights their positive potential for the treatment of PD, especially of LRRK2 mutation carriers.


Subject(s)
Aminopyridines/pharmacology , Benzamides/pharmacology , Benzodiazepinones/pharmacology , Corpus Striatum/cytology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Pyrimidines/pharmacology , Visual Cortex/cytology , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Exocytosis , Gene Knock-In Techniques , Glutamic Acid/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice , Phosphorylation , Serine/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism , Visual Cortex/drug effects , Visual Cortex/metabolism
2.
Sci Rep ; 7: 46288, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393897

ABSTRACT

D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice.


Subject(s)
Benzodiazepines/pharmacology , D-Aspartate Oxidase/antagonists & inhibitors , Glutamic Acid/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Benzodiazepines/chemistry , Clozapine/pharmacology , D-Aspartate Oxidase/genetics , D-Aspartate Oxidase/metabolism , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Male , Mice , Mice, Knockout , N-Methylaspartate/metabolism , Olanzapine , Receptors, N-Methyl-D-Aspartate/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...