Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Technol ; 36(19): 2515-23, 2015.
Article in English | MEDLINE | ID: mdl-25846482

ABSTRACT

This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were used to neutralize AMD in a SBR with a hydraulic retention time (including settling) of 100 min and a sludge retention time of 360 min, by simultaneously monitoring the Fe(II) removal kinetics and overall assessment of the AMD after treatment. The Fe(II) kinetics removal and overall AMD treatment were observed to be highly dependent on the limestone grade used, with Fe(II) completely removed to levels lower than 50 mg/L in cycle 1 after 30 min using high quality or pure paper and pulp limestone. On the contrary, the other grade limestone, namely waste limestone, could only achieve a similar Fe(II) removal efficiency after four cycles. It was also noticed that suspended solids concentration plays a significant role in Fe(II) removal kinetics. In this regard, using pure limestone from the paper and pulp industry will have advantages compared with waste limestone for AMD neutralization. It has significant process impacts for the SBR configuration as it allows one cycle treatment resulting in a significant reduction of the feed stock, with subsequent generation of less sludge during AMD neutralization. However, the use of waste calcium carbonate from the paper and pulp industry as a feed stock during AMD neutralization can achieve significant cost savings as it is cheaper than the pure limestone and can achieve the same removal efficiency after four cycles.


Subject(s)
Bioreactors , Calcium Carbonate/chemistry , Iron/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/prevention & control , Book Industry , Hydrogen-Ion Concentration , Mining , Pilot Projects
2.
Water Sci Technol ; 68(6): 1406-11, 2013.
Article in English | MEDLINE | ID: mdl-24056441

ABSTRACT

This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.


Subject(s)
Bioreactors , Iron/chemistry , Waste Disposal, Fluid/methods , Calcium Carbonate/chemistry , Gold , Hydrogen-Ion Concentration , Industrial Waste , Kinetics , Mining , Oxidation-Reduction , Sewage , South Africa
3.
Water Sci Technol ; 65(9): 1577-82, 2012.
Article in English | MEDLINE | ID: mdl-22508119

ABSTRACT

Precipitated CaCO(3) compounds recovered from pulped waste gypsum using some carbonate and hydroxide-based reagents were evaluated for their utilization in acid mine drainage (AMD) neutralization. The neutralization potentials, acid neutralization capacities and compositions of the CaCO(3) compounds were determined and compared with some commercial CaCO(3). It was observed that CaCO(3) recovered from waste gypsum using Na(2)CO(3) significantly neutralized AMD compared with commercial CaCO(3) and that recovered using both (NH(4))(2)CO(3) or NH(4)OH-CO(2) reagents. Moreover, a higher acid neutralization capacity of 1,370 kg H(2)SO(4)/t was determined for CaCO(3) recovered from waste gypsum using Na(2)CO(3) compared with an average of 721 and 1,081 kg H(2)SO(4)/t for ammonium-based CaCO(3) and commercial CaCO(3) respectively. The inorganic carbon content for the CaCO(3) recovered using Na(2)CO(3) and ammonium-based reagents of 49 and 34% respectively confirmed their observed neutralization potentials and acid neutralization capacities, while energy dispersive X-ray fluorescence suggested absence of major oxide impurities, with the exception of residual SO(4)(2-) and Na(2)O which still requires further reduction in the respective compounds.


Subject(s)
Calcium Carbonate/chemistry , Calcium Sulfate/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Mining , Water Pollution, Chemical/prevention & control , Water Purification
4.
Water Sci Technol ; 65(2): 324-31, 2012.
Article in English | MEDLINE | ID: mdl-22233912

ABSTRACT

Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).


Subject(s)
Barium Compounds/chemistry , Barium/chemistry , Carbon Dioxide/chemistry , Carbonates/chemistry , Coal Mining , Industrial Waste , Sulfides/chemistry , Waste Disposal, Fluid/methods , Pilot Projects , Sulfates/chemistry
5.
Water Sci Technol ; 63(12): 2860-6, 2011.
Article in English | MEDLINE | ID: mdl-22049711

ABSTRACT

The dissolution characteristics of CaS in the presence of CO2 has been investigated by monitoring sulfide speciation, solution conductivity and pH during dissolution. The sulfide speciation associated with CaS dissolution was utilized for metal precipitation from acidic wastewater effluents. The mechanism involved in the dissolution process was observed to be pH-dependent, characterized by increased solution conductivity as the HS(-) species becomes dominant in solution in the form of the Ca(HS)2 complex. The replacement of HS(-) by CO3(2-) in the Ca(HS)2 complex triggered CaCO3 precipitation and H2S stripping and this was characterized by decreased solution pH and conductivity. The sulfide to total metal molar ratio was observed to have an effect on the pH and therefore sulfide speciation as well as extent of metal removal. The utilization of CaS in the treatment of acidic wastewater effluents demonstrated complete metal removal, with the potential of a pH-controlled selective metal removal and recovery.


Subject(s)
Calcium Compounds/chemistry , Chemical Precipitation , Metals, Heavy/isolation & purification , Sulfides/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Acids , Equipment Design , Hydrogen-Ion Concentration , Mining , Sewage/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL