Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 6608, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25318849

ABSTRACT

The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, E bind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.

2.
Nano Lett ; 12(6): 2931-5, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22568874

ABSTRACT

We explore the dependence of electrical transport in a graphene field effect transistor (GraFET) on the flow of water/sodium chloride electrolyte within the immediate vicinity of that transistor. We find large and reproducible shifts in the charge neutrality point of GraFETs that are dependent on the liquid velocity and the ion concentration. We show that these shifts are consistent with the variation of the local electrochemical potential of the liquid next to graphene that are caused by the fluid flow (streaming potential). Furthermore, we utilize the sensitivity of electrical transport in GraFETs to the parameters of the fluid flow to demonstrate graphene-based mass flow and ionic concentration sensing. We successfully detect a flow as small as ∼70 nL/min and detect a change in the ionic concentration as small as ∼40 nM.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Rheology/instrumentation , Transistors, Electronic , Equipment Design , Equipment Failure Analysis , Particle Size
3.
Phys Rev Lett ; 101(9): 096802, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851636

ABSTRACT

The resistivity of ultraclean suspended graphene is strongly temperature (T) dependent for 50.5 x 10(11) cm(-2), the resistivity increases with increasing T and is linear above 50 K, suggesting carrier scattering from acoustic phonons. At T=240 K the mobility is approximately 120,000 cm2/V s, higher than in any known semiconductor. At the charge neutral point we observe a nonuniversal conductivity that decreases with decreasing T, consistent with a density inhomogeneity <10(8) cm(-2).

SELECTION OF CITATIONS
SEARCH DETAIL
...