Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(4): e0194200, 2018.
Article in English | MEDLINE | ID: mdl-29617397

ABSTRACT

Populations of widespread pest insects in tropical areas are characterized by a complex evolutionary history, with overlapping natural and human-mediated dispersal events, sudden expansions, and bottlenecks. Here, we provide biogeographic reconstructions for two widespread pest species in the tiger moth genus Creatonotos (Lepidoptera: Erebidae: Arctiinae) based on the mitochondrial cytochrome c oxidase subunit I (COI) gene. The Asian Creatonotos transiens reveals shallow genetic divergence between distant populations that does not support its current intraspecific systematics with several local subspecies. In contrast, the more widespread Creatonotos gangis comprises at least three divergent subclades corresponding to certain geographic areas, i.e. Australia, Arabia + South Asia and Southeast Asia. With respect to our approximate Bayesian computation (ABC) model, the expansion of Creatonotos gangis into Australia is placed in the Late Pleistocene (~65-63 ka). This dating coincide with an approximate time of the earliest human migration into the continent (~65-54 ka) and the period of intervisibility between Timor and Australia (~65-62 ka). Our findings highlight that the drying Sunda and Sahul shelf areas likely support successful migrations of Asian taxa into Australia during the Pleistocene. The phylogeographic patterns discovered in this study can be used to improve the effectiveness of integrated pest control programs that is a task of substantial practical importance to a broad range of agricultural stakeholders.


Subject(s)
DNA Barcoding, Taxonomic , Moths/genetics , Animal Migration , Animals , Arabia , Asia , Australia , Bayes Theorem , Biological Evolution , Genetic Variation , Phylogeography
2.
PLoS One ; 10(5): e0122408, 2015.
Article in English | MEDLINE | ID: mdl-26011762

ABSTRACT

The freshwater pearl mussel family Margaritiferidae includes 13 extant species, which are all listed by IUCN as endangered or vulnerable taxa. In this study, an extensive spatial sampling of Margaritifera spp. across the Russian Far East (Amur Basin, Kamchatka Peninsula, Kurile Archipelago and Sakhalin Island) was conducted for a revision of their taxonomy and distribution ranges. Based on their DNA sequences, shell and soft tissue morphology, three valid species were identified: Margaritifera dahurica (Middendorff, 1850), M. laevis (Haas, 1910) and M. middendorffi (Rosén, 1926). M. dahurica ranges across the Amur basin and some of the nearest river systems. M. laevis is distributed in Japan, Sakhalin Island and the Kurile Archipelago. M. middendorffi was previously considered an endemic species of the Kamchatka. However, it is widespread in the rivers of Kamchatka, Sakhalin Island, the Kurile Islands (across the Bussol Strait, which is the most significant biogeographical boundary within the archipelago), and, likely, in Japan. The Japanese species M. togakushiensis Kondo & Kobayashi, 2005 seems to be conspecific with M. middendorffi because of similar morphological patterns, small shell size (<100 mm long) and overlapped ranges, but it is in need of a separate revision. Phylogenetic analysis reveals that two NW Pacific margaritiferid species, M. laevis and M. middendorffi, formed a monophyletic 18S rDNA clade together with the North American species M. marrianae and M. falcata. The patterns that were found in these Margaritifera spp. are similar to those of freshwater fishes, indicating multiple colonizations of Eastern Asia by different mitochondrial lineages, including an ancient Beringian exchange between freshwater faunas across the Pacific.


Subject(s)
Bivalvia/classification , Fresh Water , Animal Shells/anatomy & histology , Animals , Bayes Theorem , Ecosystem , Geography , Haplotypes , Phylogeny , Population Dynamics , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...