Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697631

ABSTRACT

Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using 13 CO2 pulse labelling, patterns of naturally occurring stable isotopes (26 Mg and 15 N) and high-throughput DNA sequencing of fungal amplicons. Reduction in OM resulted in nitrogen limitation of plant growth and decreased allocation of photosynthetically derived carbon and mycelial growth in mineral horizons. Fractionation patterns of 26 Mg indicated that magnesium mobilisation and uptake occurred primarily in the deeper mineral horizon and was driven by carbon allocation to ectomycorrhizal mycelium. In this horizon, relative abundance of ectomycorrhizal fungi, carbon allocation and base cation mobilisation all increased with increased OM availability. Allocation of carbon through ectomycorrhizal fungi integrates organic nitrogen mobilisation and mineral weathering across soil horizons, improving the efficiency of plant nutrient acquisition. Our findings have fundamental implications for sustainable forest management and belowground carbon sequestration.

2.
Environ Sci Pollut Res Int ; 27(16): 19810-19825, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32222920

ABSTRACT

This study addresses the different biogeochemical parameters that control the dynamics of Hg, which is a less-studied metal in the Ebrié Lagoon. During two hydrological seasons, the dry season and the rainy season, we regularly sampled and analysed various compartments (e.g. sediments and fishes (Tilapia sp.)) of the lagoon. Thus, the physicochemical parameters were measured in situ (e.g. temperature, pH, salinity, redox potential and dissolved oxygen, total dissolved organic carbon, nitrates and sulphates), and the microbiological parameters (e.g. cultivable cells, total enzymatic activity and catabolic activity) were measured to establish the seasonal variations in the links between Hg and biogeochemical parameters through multivariate statistical analyses. The bioavailability of Hg from an unpolluted site was studied by comparing the ratios of fish and sediment. The results indicated that the seasons influenced the different biogeochemical factors, although for some factors, the variations were not significant. This influence was more pronounced in the dry season than in the rainy season. The impact of microbial activities and organic matter on Hg dynamics was observed in all seasons. However, other factors, such as pH, temperature, salinity, Eh and sulphates, influenced the dynamics of Hg only in the dry season.


Subject(s)
Ecosystem , Mercury/analysis , Animals , Cote d'Ivoire , Rain , Seasons
3.
Environ Microbiol Rep ; 8(6): 956-965, 2016 12.
Article in English | MEDLINE | ID: mdl-27588362

ABSTRACT

Symbiotic ectomycorrhizal fungi mobilize nutrients from both organic and inorganic substrates and supply them to their host plants. Their role in mobilizing base cations and phosphorus from mineral substrates through weathering has received increasing attention in recent years but the processes involved remain to be elucidated. We grew selected ectomycorrhizal and nonmycorrhizal fungi in axenic systems containing mineral and organic substrates and examined their capacity to fractionate and assimilate stable isotopes of magnesium. The mycorrhizal fungi were significantly depleted in heavy isotopes with the lowest Δ26 Mg values (the difference between δ26 Mg in fungal tissue and δ26 Mg in the substrate) compared with nonmycorrhizal fungi, when grown on mineral substrates containing granite particles. The ectomycorrhizal fungi accumulated significantly higher concentrations of Mg, K and P than the nonmycorrhizal fungi. There was a highly significant statistical relationship between δ26 Mg tissue signature and mycelial concentration of Mg, with a clear separation between most ectomycorrhizal fungi and the nonmycorrhizal fungi. These results are consistent with the idea that ectomycorrhizal fungi have evolved efficient mechanisms to mobilize, transport and store Mg within their mycelia.


Subject(s)
Magnesium/metabolism , Mycorrhizae/metabolism , Plants/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...