Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biopolymers ; 108(4)2017 Jul.
Article in English | MEDLINE | ID: mdl-28085180

ABSTRACT

Hydrophobicity has proven to be an extremely useful parameter in small molecule drug discovery programmes given that it can be used as a predictive tool to enable rational design. For larger molecules, including peptoids, where folding is possible, the situation is more complicated and the average hydrophobicity (as determined by RP-HPLC retention time) may not always provide an effective predictive tool for rational design. Herein, we report the first ever application of partitioning experiments to determine the log D values for a series of peptoids. By comparing log D and average hydrophobicities we highlight the potential advantage of employing the former as a predictive tool in the rational design of biologically active peptoids.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hydrophobic and Hydrophilic Interactions , Peptoids/chemistry , Peptide Library
2.
Medchemcomm ; 8(5): 886-896, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108804

ABSTRACT

Peptoids are a promising class of antimicrobial agents with reported activities against a range of both Gram-positive and Gram-negative bacteria, fungi and most recently parasites. However, at present the available toxicity data is somewhat limited and as such rationally designing effective antimicrobial peptoids can be challenging. Herein, we present the toxicity profiling of a series of linear peptoids against mammalian cell lines (HaCaT and HepG2). The cytotoxicity of the peptoid library has then been correlated with their antibacterial properties against Gram-positive and Gram-negative bacteria and also to the hydrophobicity of the peptoid sequences. The work presented provides valuable data to aid in the future rational design of antimicrobial peptoids.

3.
Org Biomol Chem ; 14(4): 1211-5, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26660061

ABSTRACT

Peptoids are a promising class of peptidomimetics that exhibit the key chemical and physical properties of peptides but without being hampered by susceptibility towards enzymatic degradation. Biologically active peptoids are often designed to be amphipathic in nature, consisting of hydrophobic monomers interspersed with either cationic lysine-type or arginine-type monomers. Access to amphipathic peptoids that contain both lysine-type and arginine-type monomers is highly desirable as it offers a route to further modulate the biological properties of this class of molecule. However, the lack of a suitable synthetic route to prepare mixed cationic peptoids has meant that their biological potential has remained almost largely unexplored. Herein, we present an efficient synthetic route that can be used to access novel cationic peptoids containing both lysine-type and arginine-type monomers within the same sequence.


Subject(s)
Arginine/chemistry , Lysine/chemistry , Peptoids/chemistry , Peptoids/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...