Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; : 100594, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009243

ABSTRACT

Bile salts can strongly influence energy metabolism through systemic signaling, which can be enhanced by inhibiting the hepatic bile salt transporter Na+ taurocholate cotransporting polypeptide (NTCP), thereby delaying hepatic reuptake of bile salts to increase systemic bile salt levels. Bulevirtide is an NTCP inhibitor and was originally developed to prevent NTCP-mediated entry of Hepatitis B and D into hepatocytes. We previously demonstrated that NTCP inhibition lowers body weight, induces glucagon like peptide-1 (GLP1) secretion, and lowers plasma cholesterol levels in murine obesity models. In humans, a genetic loss-of-function variant of NTCP has been associated with reduced plasma cholesterol levels. Here, we aimed to assess if Bulevirtide treatment attenuates atherosclerosis development by treating female Ldlr-/- mice with Bulevirtide or vehicle for 11 weeks. Since this did not result in the expected increase plasma bile salt levels, we generated Oatp1a1-/-Ldlr-/- mice, an atherosclerosis-prone model with human-like hepatic bile salt uptake characteristics. These mice showed delayed plasma clearance of bile salts and elevated bile salt levels upon Bulevirtide treatment. At study endpoint, Bulevirtide-treated female Oatp1a1-/-Ldlr-/- mice had reduced atherosclerotic lesion area in the aortic root that coincided with lowered plasma LDL-c levels, independent of intestinal cholesterol absorption. In conclusion, Bulevirtide, which is considered safe and is EMA-approved for the treatment of Hepatitis D, reduced atherosclerotic lesion area by reducing plasma LDL-c levels. We anticipate that its application may extend to atherosclerotic cardiovascular diseases, which warrants clinical trials.

2.
JHEP Rep ; 6(1): 100917, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38074508

ABSTRACT

Background & Aims: Intestine-restricted inhibitors of the apical sodium-dependent bile acid transporter (ASBT, or ileal bile acid transporter) are approved as treatment for several inheritable forms of cholestasis but are also associated with abdominal complaints and diarrhoea. Furthermore, blocking ASBT as a single therapeutic approach may be less effective in moderate to severe cholestasis. We hypothesised that interventions that lower hepatic bile salt synthesis in addition to intestinal bile salt uptake inhibition provide added therapeutic benefit in the treatment of cholestatic disorders. Here, we test combination therapies of intestinal ASBT inhibition together with obeticholic acid (OCA), cilofexor, and the non-tumorigenic fibroblast growth factor 15 (Fgf15)/fibroblast growth factor 19 (FGF19) analogue aldafermin in a mouse model of cholestasis. Methods: Wild-type male C57Bl6J/OlaHsd mice were fed a 0.05% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and received daily oral gavage with 10 mg/kg OCA, 30 mg/kg cilofexor, 10 mg/kg ASBT inhibitor (Linerixibat; ASBTi), or a combination. Alternatively, wild-type male C57Bl6J/OlaHsd mice were injected with adeno-associated virus vector serotype 8 (AAV8) to express aldafermin, to repress bile salt synthesis, or to control AAV8. During a 3-week 0.05% DDC diet, mice received daily oral gavage with 10 mg/kg ASBTi or placebo control. Results: Combination therapy of OCA, cilofexor, or aldafermin with ASBTi effectively reduced faecal bile salt excretion. Compared with ASBTi monotherapy, aldafermin + ASBTi further lowered plasma bile salt levels. Cilofexor + ASBTi and aldafermin + ASBTi treatment reduced plasma alanine transaminase and aspartate transaminase levels and fibrotic liver immunohistochemistry stainings. The reduction in inflammation and fibrogenesis in mice treated with cilofexor + ASBTi or aldafermin + ASBTi was confirmed by gene expression analysis. Conclusions: Combining pharmacological intestinal bile salt uptake inhibition with repression of bile salt synthesis may form an effective treatment strategy to reduce liver injury while dampening the ASBTi-induced colonic bile salt load. Impact and Implications: Combined treatment of intestinal ASBT inhibition with repression of bile salt synthesis by farnesoid X receptor agonism (using either obeticholic acid or cilofexor) or by expression of aldafermin ameliorates liver damage in cholestatic mice. In addition, compared with ASBT inhibitor monotherapy, combination treatments lower colonic bile salt load.

3.
JHEP Rep ; 4(11): 100573, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36160754

ABSTRACT

Background & Aims: Non-absorbable inhibitors of the apical sodium-dependent bile acid transporter (ASBT; also called ileal bile acid transporter [IBAT]) are recently approved or in clinical development for multiple cholestatic liver disorders and lead to a reduction in pruritus and (markers for) liver injury. Unfortunately, non-absorbable ASBT inhibitors (ASBTi) can induce diarrhoea or may be ineffective if cholestasis is extensive and largely precludes intestinal excretion of bile acids. Systemically acting ASBTi that divert bile salts towards renal excretion may alleviate these issues. Methods: Bile duct ligation (BDL) was performed in ASBT-deficient (ASBT knockout [KO]) mice as a model for chronic systemic ASBT inhibition in obstructive cholestasis. Co-infusion of radiolabelled taurocholate and inulin was used to quantify renal bile salt excretion after BDL. In a second (wild-type) mouse model, a combination of obeticholic acid (OCA) and intestine-restricted ASBT inhibition was used to lower the bile salt pool size before BDL. Results: After BDL, ASBT KO mice had reduced plasma bilirubin and alkaline phosphatase compared with wild-type mice with BDL and showed a marked reduction in liver necrotic areas at histopathological analysis, suggesting decreased BDL-induced liver damage. Furthermore, ASBT KO mice had reduced bile salt pool size, lower plasma taurine-conjugated polyhydroxylated bile salt, and increased urinary bile salt excretion. Pretreatment with OCA + ASBTi in wild-type mice reduced the pool size and greatly improved liver injury markers and liver histology. Conclusions: A reduced bile salt pool at the onset of cholestasis effectively lowers cholestatic liver injury in mice. Systemic ASBT inhibition may be valuable as treatment for cholestatic liver disease by lowering the pool size and increasing renal bile salt output even under conditions of minimal faecal bile salt secretion. Lay summary: Novel treatment approaches against cholestatic liver disease (resulting in reduced or blocked flow of bile) involve non-absorbable inhibitors of the bile acid transport protein ASBT, but these are not always effective and/or can cause unwanted side effects. In this study, we demonstrate that systemic inhibition/inactivation of ASBT protects mice against developing severe cholestatic liver injury after bile duct ligation, by reducing bile salt pool size and increasing renal bile salt excretion.

4.
JHEP Rep ; 4(5): 100463, 2022 May.
Article in English | MEDLINE | ID: mdl-35462858

ABSTRACT

Background & Aims: Organic solute transporter (OST) subunits OSTα and OSTß facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTß display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTß deficiency. Methods: Ostß -/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα -/- mice. OSTß was re-expressed in livers of Ostß -/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results: Similar to Ostα -/- mice, Ostß -/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostß -/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα -/- mice, induction of cholestasis in Ostß -/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostß expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostß -/- mice. Conclusions: OSTß is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα -/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTß deficiencies. Lay summary: Organic solute transporter (OST) subunits OSTα and OSTß together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostß knockout mice for the first time. Ostα and Ostß knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostß knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTß, possibly as an interacting partner of other intestinal proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...