Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 105(3): 037201, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867797

ABSTRACT

The influence of the magnetostatic interaction on vortex dynamics in arrays of ferromagnetic disks is investigated by means of a broadband ferromagnetic-resonance setup. Transmission spectra reveal a strong dependence of the resonance frequency of vortex-core motion on the ratio between the center-to-center distance and the element size. For a decreasing ratio, a considerable broadening of the absorption peak is observed following an inverse sixth power law. An analogy between the vortex system and rotating dipoles is confirmed by micromagnetic simulations.

2.
Phys Rev Lett ; 103(19): 197204, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20365952

ABSTRACT

A dependence of current-induced domain-wall motion in nanowires on the temporal shape of current pulses is observed. The results show that the motion of the wall is amplified for alterations of the current on a time scale smaller than the intrinsic time scale of the domain wall which is a few nanoseconds in permalloy. This effect arises from an additional force on the wall by the spin-transfer torque due to a fast changing current and improves the efficiency of domain-wall motion. The observations provide an understanding for the efficient domain-wall motion with nanosecond current pulses.

3.
Phys Rev Lett ; 100(17): 176601, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18518316

ABSTRACT

Time-resolved x-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque-induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.

4.
Phys Rev Lett ; 98(18): 187202, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17501604

ABSTRACT

Magnetic transmission x-ray microscopy is used to directly visualize the influence of a spin-polarized current on domain walls in curved permalloy wires. Pulses of nanosecond duration and of high current density up to 1.0x10(12) A/m(2) are used to move and to deform the domain wall. The current pulse drives the wall either undisturbed, i.e., as composite particle through the wire, or causes structural changes of the magnetization. Repetitive pulse measurements reveal the stochastic nature of current-induced domain-wall motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...