Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Repair (Amst) ; 128: 103529, 2023 08.
Article in English | MEDLINE | ID: mdl-37390674

ABSTRACT

DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.


Subject(s)
DNA Adducts , Neoplasms , Humans , DNA Damage , DNA Repair , Mutagenesis , Neoplasms/genetics
2.
Genes (Basel) ; 13(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35205357

ABSTRACT

The identification of mutants through forward genetic screens is the backbone of Drosophila genetics research, yet many mutants identified through these screens have yet to be mapped to the Drosophila genome. This is especially true of mutants that have been identified as mutagen-sensitive (mus), but have not yet been mapped to their associated molecular locus. Our study addressed the need for additional mus gene identification by determining the locus and exploring the function of the X-linked mutagen-sensitive gene mus109 using three available mutant alleles: mus109D1, mus109D2, and mus109lS. After first confirming that all three mus109 alleles were sensitive to methyl methanesulfonate (MMS) using complementation analysis, we used deletion mapping to narrow the candidate genes for mus109. Through DNA sequencing, we were able to determine that mus109 is the uncharacterized gene CG2990, which encodes the Drosophila ortholog of the highly conserved DNA2 protein that is important for DNA replication and repair. We further used the sequence and structure of DNA2 to predict the impact of the mus109 allele mutations on the final gene product. Together, these results provide a tool for researchers to further investigate the role of DNA2 in DNA repair processes in Drosophila.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , DNA Repair/genetics , Drosophila/genetics , Drosophila melanogaster/genetics , Methyl Methanesulfonate/toxicity , Mutagens/toxicity
3.
Biomolecules ; 11(12)2021 12 12.
Article in English | MEDLINE | ID: mdl-34944512

ABSTRACT

As organisms age, their resistance to stress decreases while their risk of disease increases. This can be shown in patients with Werner syndrome (WS), which is a genetic disease characterized by accelerated aging along with increased risk of cancer and metabolic disease. WS is caused by mutations in WRN, a gene involved in DNA replication and repair. Recent research has shown that WRN mutations contribute to multiple hallmarks of aging including genomic instability, telomere attrition, and mitochondrial dysfunction. However, questions remain regarding the onset and effect of stress on early aging. We used a fly model of WS (WRNexoΔ) to investigate stress response during different life stages and found that stress sensitivity varies according to age and stressor. While larvae and young WRNexoΔ adults are not sensitive to exogenous oxidative stress, high antioxidant activity suggests high levels of endogenous oxidative stress. WRNexoΔ adults are sensitive to stress caused by elevated temperature and starvation suggesting abnormalities in energy storage and a possible link to metabolic dysfunction in WS patients. We also observed higher levels of sleep in aged WRNexoΔ adults suggesting an additional adaptive mechanism to protect against age-related stress. We suggest that stress response in WRNexoΔ is multifaceted and evokes a systemic physiological response to protect against cellular damage. These data further validate WRNexoΔ flies as a WS model with which to study mechanisms of early aging and provide a foundation for development of treatments for WS and similar diseases.


Subject(s)
Aging/physiology , Drosophila Proteins/genetics , Exonucleases/genetics , Mutation , Sleep/physiology , Werner Syndrome Helicase/genetics , Werner Syndrome/genetics , Aging/genetics , Animals , Disease Models, Animal , Drosophila , Female , Humans , Male , Oxidative Stress , Sleep/genetics
4.
Exp Gerontol ; 127: 110733, 2019 11.
Article in English | MEDLINE | ID: mdl-31518666

ABSTRACT

Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by patients' early onset of aging, increased risk of cancer and other age-related pathologies. WS is caused by mutations in WRN, a RecQ helicase that has essential roles responding to DNA damage and preventing genomic instability. While human WRN has both an exonuclease and helicase domain, Drosophila WRNexo has high genetic and functional homology to only the exonuclease domain of WRN. Like WRN-deficient human cells, Drosophila WRNexo null mutants (WRNexoΔ) are sensitive to replication stress, demonstrating mechanistic similarities between these two models. Compared to age-matched wild-type controls, WRNexoΔ flies exhibit increased physiological signs of aging, such as shorter lifespans, higher tumor incidence, muscle degeneration, reduced climbing ability, altered behavior, and reduced locomotor activity. Interestingly, these effects are more pronounced in females suggesting sex-specific differences in the role of WRNexo in aging. This and future mechanistic studies will contribute to our knowledge in linking faulty DNA repair mechanisms with the process of aging.


Subject(s)
Aging, Premature/genetics , Drosophila Proteins/deficiency , Exonucleases/deficiency , Werner Syndrome/physiopathology , Aging, Premature/physiopathology , Animals , Behavior, Animal/physiology , Body Composition/physiology , Body Weight/physiology , DNA Repair/physiology , Drosophila , Drosophila Proteins/genetics , Exonucleases/genetics , Female , Gastrointestinal Neoplasms/physiopathology , Male , Motor Activity/physiology , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Mutation/genetics , Phenotype
5.
Genetics ; 197(2): 643-52, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24709634

ABSTRACT

Members of the RecQ family of helicases are known for their roles in DNA repair, replication, and recombination. Mutations in the human RecQ helicases, WRN and BLM, cause Werner and Bloom syndromes, which are diseases characterized by genome instability and an increased risk of cancer. While WRN contains both a helicase and an exonuclease domain, the Drosophila melanogaster homolog, WRNexo, contains only the exonuclease domain. Therefore the Drosophila model system provides a unique opportunity to study the exonuclease functions of WRN separate from the helicase. We created a null allele of WRNexo via imprecise P-element excision. The null WRNexo mutants are not sensitive to double-strand break-inducing reagents, suggesting that the exonuclease does not play a key role in homologous recombination-mediated repair of DSBs. However, WRNexo mutant embryos have a reduced hatching frequency and larvae are sensitive to the replication fork-stalling reagent, hydroxyurea (HU), suggesting that WRNexo is important in responding to replication stress. The role of WRNexo in the HU-induced stress response is independent of Rad51. Interestingly, the hatching defect and HU sensitivity of WRNexo mutants do not occur in flies containing an exonuclease-dead copy of WRNexo, suggesting that the role of WRNexo in replication is independent of exonuclease activity. Additionally, WRNexo and Blm mutants exhibit similar sensitivity to HU and synthetic lethality in combination with mutations in structure-selective endonucleases. We propose that WRNexo and BLM interact to promote fork reversal following replication fork stalling and in their absence regressed forks are restarted through a Rad51-mediated process.


Subject(s)
DNA Replication , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Exonucleases/metabolism , RecQ Helicases/metabolism , Animals , DNA Breaks, Double-Stranded , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Exonucleases/genetics , Female , Gene Expression Regulation, Developmental , Hydroxyurea , Male , Mutation , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , RecQ Helicases/genetics
6.
Toxicol Appl Pharmacol ; 276(3): 171-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24576722

ABSTRACT

The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial-stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin.


Subject(s)
Keratinocytes/drug effects , Matrix Metalloproteinase 10/metabolism , Polychlorinated Dibenzodioxins/toxicity , Cells, Cultured , Humans , Keratinocytes/metabolism , Matrix Metalloproteinase 10/genetics , Organ Specificity , Tissue Inhibitor of Metalloproteinase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...