Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22538, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110441

ABSTRACT

We report an experimental study of the 2D dynamics of active particles driven by quantum vortices on the free surface of superfluid helium at T = 1.45 К. The particle motion at short times (< 25 ms) relates to anomalous diffusion mode typical for active particles, while for longer times it corresponds to normal diffusion mode. The values of the rotational and translational kinetic energies of the particle allow to determine for the first time the intensity of the particle-vortex interaction and the dissipation rate of the vortex bundle energy. Strong bonding between a particle and a vortex is explained by coupling of normal and superfluid components.

2.
Sci Rep ; 12(1): 6085, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413969

ABSTRACT

Complex structures, consisting of a large number of interacting subsystems, have the ability to self-organize and evolve, when the scattering of energy coming from the outside ensures the maintenance of stationary ordered structures with an entropy less than the equilibrium entropy. One of the fundamental problems here is the role of quantum phenomena in the evolution of macroscopic objects. We provide experimental evidence for the active Brownian motion and evolution of structures driven by quantum effects for micron-sized grains levitating in superfluid helium. The active Brownian motion of grains was induced by quantum turbulence during the absorption of laser irradiation by grains. The intensity of Brownian motion associated with quantum vortices increased by 6-7 orders of magnitude compared to the values from the Einstein formula. We observed the grain structures in a state far from thermodynamic equilibrium and their evolution to more complex organized structures with lower entropy due to the quantum mechanism of exceedingly high entropy loss in superfluid helium.

3.
Molecules ; 27(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35011460

ABSTRACT

The nonlinear dust-acoustic instability in the condensed submicron fraction of dust particles in the low-pressure glow discharge at ultra-low temperatures is experimentally and theoretically investigated. The main discharge parameters are estimated on the basisof the dust-acoustic wave analysis. In particular, the temperature and density of ions, as well as the Debye radius, are determined. It is shown that the ion temperature exceeds the temperature of the neutral gas. The drift characteristics of all plasma fractions are estimated. The reasons for the instability excitation are considered.

4.
Sci Rep ; 9(1): 3261, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824787

ABSTRACT

A multimodal dusty plasma formed in a positive column of the direct current glow discharge at superfluid helium temperatures has been studied for the first time. Formation of a liquid-like dusty plasma structure occurred after injection of polydisperse cerium oxide particles in the glow discharge. The coupling parameter ~10 determined for the dusty plasma structure corresponds very well to its liquid-like type. The cloud of nanoparticles and non-linear waves within the cloud were observed at T < 2 K. Solid helical filaments with length up to 5 mm, diameter up to 22 µm, total charges ~106е, levitating in the gas discharge at the temperature ~2 K and pressure 4 Pa have been observed for the first time. Analysis of the experimental conditions and the filament composition allows us to conclude that the filaments and nanoclusters were formed due to ion sputtering of dielectric material during the experiments.

5.
J Phys Chem A ; 121(47): 9045-9057, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29112821

ABSTRACT

We studied the luminescence of molecular nitrogen nanoclusters containing stabilized nitrogen, oxygen, hydrogen, and deuterium atoms. Optical spectra were observed during the destruction of these ensembles of nanoclusters accompanied by a rapid release of chemical energy stored in the samples. Several interesting features were observed including a broad band near λ ≈ 360 nm, which was identified as emission corresponding to 2Ag→1Ag transition of N4(D2h) polymeric nitrogen. Also the sharp lines at λ ∼ 336 and 473 nm were observed, and their assignments to ND radicals are discussed.

6.
J Phys Chem A ; 119(11): 2438-48, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25353614

ABSTRACT

We present the first observations of excimer XeO* molecules in molecular nitrogen films surrounding xenon cores of nanoclusters. Multishell nanoclusters form upon the fast cooling of a helium jet containing small admixtures of nitrogen and xenon by cold helium vapor (T = 1.5 K). Such nanoclusters injected into superfluid helium aggregate into porous impurity-helium condensates. Passage of helium gas with admixtures through a radio frequency discharge allows the storage of high densities of radicals stabilized in impurity-helium condensates. Intense recombination of the radicals occurs during destruction of such condensates and generates excited species observable because of optical emission. Rich spectra of xenon-oxygen complexes have been detected upon destruction of xenon-nitrogen-helium condensates. A xenon environment quenches metastable N((2)D) atoms but has a much weaker effect on the luminescence of N((2)P) atoms. Electron spin resonance spectra of N((4)S) atoms trapped in xenon-nitrogen-helium condensates have been studied. High local concentrations of nitrogen atoms (up to 10(21) cm(-3)) stabilized in xenon-nitrogen nanoclusters have been revealed.

SELECTION OF CITATIONS
SEARCH DETAIL
...