Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Mov Ecol ; 12(1): 46, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872225

ABSTRACT

BACKGROUND: Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes. METHODS: We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics. RESULTS: All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar. CONCLUSIONS: The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions.

2.
Nat Commun ; 14(1): 3665, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402727

ABSTRACT

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.


Subject(s)
Plastics , Waste Products , Animals , Plastics/toxicity , Waste Products/analysis , Environmental Monitoring , Oceans and Seas , Birds , Indian Ocean
3.
Proc Natl Acad Sci U S A ; 120(19): e2208389120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126701

ABSTRACT

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.


Subject(s)
Climate Change , Life History Traits , Animals , Female , Seasons , Chickens , Reproduction
4.
Curr Biol ; 32(17): 3800-3807.e3, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35870447

ABSTRACT

Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1-4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world's most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole's halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole's version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.


Subject(s)
Charadriiformes , Animals , Ecosystem , Population Dynamics , Reproduction
5.
J Anim Ecol ; 90(12): 2875-2887, 2021 12.
Article in English | MEDLINE | ID: mdl-34492121

ABSTRACT

Individual specialisations in behaviour are predicted to arise where divergence benefits fitness. Such specialisations are more likely in heterogeneous environments where there is both greater ecological opportunity and competition-driven frequency dependent selection. Such an effect could explain observed differences in rates of individual specialisation in habitat selection, as it offers individuals an opportunity to select for habitat types that maximise resource gain while minimising competition; however, this mechanism has not been tested before. Here, we use habitat selection functions to quantify individual specialisations while foraging by black-legged kittiwakes Rissa tridactyla, a marine top predator, at 15 colonies around the United Kingdom and Ireland, along a gradient of environmental heterogeneity. We find support for the hypothesis that individual specialisations in habitat selection while foraging are more prevalent in heterogeneous environments. This trend was significant across multiple dynamic habitat variables that change over short time-scales and did not arise through site fidelity, which highlights the importance of environmental processes in facilitating behavioural adaptation by predators. Individual differences may drive evolutionary processes, and therefore these results suggest that there is broad scope for the degree of environmental heterogeneity to determine current and future population, species and community dynamics.


Subject(s)
Charadriiformes , Ecosystem , Animals , United Kingdom
6.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260406

ABSTRACT

Colonially breeding birds and mammals form some of the largest gatherings of apex predators in the natural world and have provided model systems for studying mechanisms of population regulation in animals. According to one influential hypothesis, intense competition for food among large numbers of spatially constrained foragers should result in a zone of prey depletion surrounding such colonies, ultimately limiting their size. However, while indirect and theoretical support for this phenomenon, known as "Ashmole's halo," has steadily accumulated, direct evidence remains exceptionally scarce. Using a combination of vessel-based surveys and Global Positioning System tracking, we show that pelagic seabirds breeding at the tropical island that first inspired Ashmole's hypothesis do indeed deplete their primary prey species (flying fish; Exocoetidae spp.) over a considerable area, with reduced prey density detectable >150 km from the colony. The observed prey gradient was mirrored by an opposing trend in seabird foraging effort, could not be explained by confounding environmental variability, and can be approximated using a mechanistic consumption-dispersion model, incorporating realistic rates of seabird predation and random prey dispersal. Our results provide a rare view of the resource footprint of a pelagic seabird colony and reveal how aggregations of these central-place foraging, marine top predators profoundly influence the oceans that surround them.


Subject(s)
Ecosystem , Predatory Behavior/physiology , Animals , Behavior, Animal , Biological Evolution , Birds/physiology , Competitive Behavior , Feeding Behavior/physiology , Fishes/physiology , Islands
7.
Conserv Physiol ; 9(1): coab052, 2021.
Article in English | MEDLINE | ID: mdl-34257995

ABSTRACT

Prolonged or repeated episodes of environmental stress could be especially detrimental for developing young, via impaired growth or development. Despite this, most studies investigating the effects of human recreational and tourism activities have focused on adults. An increasing demand for nature-based tourism in remote locations means that many seabirds, which have evolved largely in the absence of predators and humans, are being exposed to novel pressures. The slow-growing semi-precocial nestlings of the European storm petrel Hydrobates pelagicus experience higher mortality rates in nests exposed to human recreational disturbance. Here, we examine whether surviving nestlings reared in disturbed areas are also affected via changes in growth trajectories and baseline circulating glucocorticoids. Nestlings reared in high-disturbance areas displayed delayed mass growth, and we found weak evidence for slower rates of mass gain and tarsus growth, compared with nestlings reared in undisturbed areas. There were no differences in wing growth, consistent with prioritization of long wings, important for post-fledging survival. A tendency for a less marked age-related decline in corticosterone (CORT) in disturbed nestlings offers limited evidence that changes in growth trajectories were mediated by baseline CORT. However, disturbed nestlings could have experienced overall higher GC exposure if the acute GC response was elevated. 'Catch-up' growth enabled high-disturbance nestlings to overcome early constraints and achieve a similar, or even larger, asymptotic body size and mass as low-disturbance nestlings. While catch-up growth has been shown to carry costs for parents and offspring, the effects of disturbance were slight and considerably smaller than growth alterations driven by variation in environmental conditions between years. Nonetheless, effects of human recreational activities could be exacerbated under higher levels of human disturbance or in the presence of multiple pressures, as imposed by present rapid rates of environmental change.

8.
Ecol Evol ; 11(4): 1544-1557, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613988

ABSTRACT

AIM: Europe's only globally critically endangered seabird, the Balearic shearwater (Puffinus mauretanicus), is thought to have expanded its postbreeding range northwards into UK waters, though its at sea distribution there is not yet well understood. This study aims to identify environmental factors associated with the species' presence, map the probability of presence of the species across the western English Channel and southern Celtic Sea, and estimate the number of individuals in this area. LOCATION: The western English Channel and southern Celtic Sea. METHODS: This study analyses strip transect data collected between 2013 and 2017 from vessel-based surveys in the western English Channel and southern Celtic Sea during the Balearic shearwater's postbreeding period. Using environmental data collected directly and from remote sensors both Generalized Additive Models and the Random Forest machine learning model were used to determine shearwater presence at different locations. Abundance was estimated separately using a density multiplication approach. RESULTS: Both models indicated that oceanographic features were better predictors of shearwater presence than fish abundance. Seafloor aspect, sea surface temperature, depth, salinity, and maximum current speed were the most important predictors. The estimated number of Balearic shearwaters in the prediction area ranged from 652 birds in 2017 to 6,904 birds in 2014. MAIN CONCLUSIONS: Areas with consistently high probabilities of shearwater presence were identified at the Celtic Sea front. Our estimates suggest that the study area in southwest Britain supports between 2% and 23% of the global population of Balearic shearwaters. Based on the timing of the surveys (mainly in October), it is probable that most of the sighted shearwaters were immatures. This study provides the most complete understanding of Balearic shearwater distribution in UK waters available to date, information that will help inform any future conservation actions concerning this endangered species.

9.
Proc Natl Acad Sci U S A ; 116(43): 21629-21633, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591238

ABSTRACT

While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients.


Subject(s)
Homing Behavior/physiology , Orientation, Spatial/physiology , Spatial Navigation/physiology , Animals , Birds , Geographic Information Systems
10.
Mol Phylogenet Evol ; 139: 106552, 2019 10.
Article in English | MEDLINE | ID: mdl-31278983

ABSTRACT

Humans are inherently biased towards naming species based on morphological differences, which can lead to reproductively isolated species being mistakenly classified as one if they are morphologically similar. Recognising cryptic diversity is needed to understand drivers of speciation fully, and for accurate estimates of global biodiversity and assessments for conservation. We investigated cryptic species across the range of band-rumped storm-petrels (Hydrobates spp.): highly pelagic, nocturnal seabirds that breed on tropical and sub-tropical islands in the Atlantic and Pacific Oceans. In many breeding colonies, band-rumped storm-petrels have sympatric but temporally isolated (allochronic) populations; we sampled all breeding locations and allochronic populations. Using mitochondrial control region sequences from 754 birds, cytochrome b sequences from 69 birds, and reduced representation sequencing of the nuclear genomes of 133 birds, we uncovered high levels of genetic structuring. Population genomic analyses revealed up to seven unique clusters, and phylogenomic reconstruction showed that these represent seven monophyletic groups. We uncovered up to six independent breeding season switches across the phylogeny, spanning the continuum from genetically undifferentiated temporal populations to full allochronic species. Thus, band-rumped storm-petrels encompass multiple cryptic species, with non-geographic barriers potentially comprising strong barriers to gene flow.


Subject(s)
Charadriiformes/classification , Phylogeny , Animals , Atlantic Ocean , Bayes Theorem , Biodiversity , Breeding , Charadriiformes/genetics , DNA, Mitochondrial/genetics , Gene Flow , Genetics, Population , Geography , Likelihood Functions , Mitochondria/genetics , Pacific Ocean , Principal Component Analysis , Species Specificity
11.
Proc Biol Sci ; 286(1904): 20190795, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31161906

ABSTRACT

Environmental heterogeneity shapes the uneven distribution of resources available to foragers, and is ubiquitous in nature. Optimal foraging theory predicts that an animal's ability to exploit resource patches is key to foraging success. However, the potential fitness costs and benefits of foraging in a heterogeneous environment are difficult to measure empirically. Heterogeneity may provide higher-quality foraging opportunities, or alternatively could increase the cost of resource acquisition because of reduced patch density or increased competition. Here, we study the influence of physical environmental heterogeneity on behaviour and reproductive success of black-legged kittiwakes, Rissa tridactyla. From GPS tracking data at 15 colonies throughout their British and Irish range, we found that environments that were physically more heterogeneous were associated with longer trip duration, more time spent foraging while away from the colony, increased overlap of foraging areas between individuals and lower breeding success. These results suggest that there is greater competition between individuals for finite resources in more heterogeneous environments, which comes at a cost to reproduction. Resource hotspots are often considered beneficial, as individuals can learn to exploit them if sufficiently predictable. However, we demonstrate here that such fitness gains can be countered by greater competition in more heterogeneous environments.


Subject(s)
Behavior, Animal , Charadriiformes/physiology , Ecosystem , Animals , Breeding , Feeding Behavior , Ireland , Reproduction , Time Factors , United Kingdom
12.
J Anim Ecol ; 88(1): 138-153, 2019 01.
Article in English | MEDLINE | ID: mdl-30353538

ABSTRACT

Habitat management to restore or create breeding sites may allow metapopulations to increase in size and reduce the risk of demographic stochasticity or disasters causing metapopulation extinction. However, if newly restored or created sites are of low quality, they may act as sinks that draw individuals away from better quality sites to the detriment of metapopulation size. Following intensive conservation effort, the metapopulation of roseate tern (Sterna dougallii) in NW Europe is recovering from a large crash in numbers, but most former colonies remain unoccupied and hence are potential targets for restoration. To inform conservation efforts, we studied the dynamics of this metapopulation with a multistate integrated population model to assess each of the three main colonies for important demographic contributors to population growth rate, source/sink status and possible density dependence. All three study colonies are managed for roseate terns (and other tern species) in similar ways, but the demographic processes vary considerably between colonies. The largest colony is a source involved in almost all dispersal, and its growth is determined by survival rates and productivity. Productivity and juvenile apparent survival at the largest colony appear to be density-dependent. Although the mechanisms are unclear, this may provide an increasing impetus for emigration of recruits to other colonies in future. The smallest of the three colonies is a sink, relying on immigration for its growth. Simulation models suggest the metapopulation would be c. 10% larger in the absence of dispersal to the sink colony. This work indicates that, due to variable site quality, aims to enhance both distribution and size of metapopulations may be mutually exclusive. In this case, before future attempts to encourage recolonisation of former sites, assessments of site suitability should be undertaken, focusing on food availability and isolation from predators to maximise the likelihood of attaining levels of productivity and survival that avoid creation of a sink population to the detriment of the overall metapopulation size.


Subject(s)
Charadriiformes , Animals , Demography , Ecosystem , Europe , Population Dynamics
13.
J Anim Ecol ; 87(6): 1573-1586, 2018 11.
Article in English | MEDLINE | ID: mdl-30155905

ABSTRACT

Understanding drivers of population change is critical for effective species conservation. In the northeast Atlantic Ocean, recent changes amongst seabird communities are linked to human and climate change impacts on food webs. Many species have declined severely, with food shortages, and increased predation reducing productivity. Arctic skua Stercorarius parasiticus, a kleptoparasite of other seabirds, is one such species. The aim of the study was to determine relative effects of bottom-up and top-down pressures on Arctic skuas across multiple colonies in a rapidly declining national population. Long-term monitoring data were used to quantify changes in population size and productivity of Arctic skuas, their hosts (black-legged kittiwake Rissa tridactyla, common guillemot Uria aalge, Atlantic puffin Fratercula arctica, Arctic tern Sterna paradisaea) and an apex predator (great skua Stercorarius skua) over 24 years (1992-2015) in Scotland. We used digital mapping and statistical models to determine relative effects of bottom-up (host productivity) and top-down (great skua density) pressures on Arctic skuas across 33 colonies, and assess variation between three colony types classified by host abundance. Arctic skuas declined by 81% and their hosts by 42%-92%, whereas at most colonies great skuas increased. Annual productivity declined in Arctic skuas and their hosts, and reduced Arctic skua breeding success was a driver of the species' population decline. Arctic skua productivity was positively associated with annual breeding success of hosts and negatively with great skua density. Intercolony variation suggested Arctic skua trends and productivity were most sensitive to top-down pressures at smaller colonies of host species where great skuas had increased most, whereas bottom-up pressures dominated at large colonies of host species. Scotland's Arctic skua population is declining rapidly, with bottom-up and top-down pressures simultaneously reducing breeding success to unsustainably low levels. Marine food web alterations, strongly influenced by fisheries management and climate change, are driving the decline, and this study demonstrates severe vulnerability of seabirds to rapid change in human-modified ecosystems. Potential but untested conservation solutions for Arctic skuas include marine protected areas, supplementary feeding within colonies and management of great skuas.


Subject(s)
Charadriiformes , Animals , Arctic Regions , Atlantic Ocean , Ecosystem , Scotland
14.
PLoS One ; 13(8): e0201797, 2018.
Article in English | MEDLINE | ID: mdl-30157191

ABSTRACT

Understanding how seabirds use the marine environment is key for marine spatial planning, and maps of their marine distributions derived from transect-based surveys and from tracking of individual bird's movements are increasingly available for the same geographic areas. Although the value of integrating these different datasets is well recognised, few studies have undertaken quantitative comparisons of the resulting distributions. Here we take advantage of four existing distribution maps and conduct a quantitative comparison for four seabird species (black-legged kittiwake Rissa tridactyla; European shag Phalacrocorax aristotelis; common guillemot Uria aalge; and razorbill Alca torda). We quantify the amount of overlap and agreement in the location of high use areas identified from either tracking or transect samples and use Bhattacharyya's Affinity to quantify levels of similarity in the general distribution patterns. Despite multiple differences in the properties of the datasets, there was a far greater degree of overlap than would be expected by chance, except when adopting the most constrained definition of high use. Distance to the nearest conspecific colony appeared to be an important driver of the degree of similarity. Agreed areas of highest use tended to occur close to colonies and, with increasing distance from colonies, similarity between datasets declined and/or there was similarity in respect of their being relatively low usage. Interpreting reasons for agreement between data sources in some areas and not others was limited by an inability to control for the multiple potential sources of differences from both the sampling and modelling processes of the underlying datasets. Nevertheless, our quantitative comparative approach provides a valuable tool to quantify the degree to which an area's importance is corroborated across multiple datasets, and therefore confidence that an important area has been correctly identified. This can help prioritise where the implementation of conservation measures should be targeted and identify where greatest scrutiny is required of the potential adverse environmental effects of any planned anthropogenic activities.


Subject(s)
Animal Distribution , Birds , Seasons , Animals , Oceans and Seas , Reproduction , Spatial Analysis , United Kingdom
15.
Curr Biol ; 28(2): 275-279.e2, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29337074

ABSTRACT

Compass orientation is central to the control of animal movement from the scale of local food-caching movements around a familiar area in parids [1] and corvids [2, 3] to the first autumn vector navigation of songbirds embarking on long-distance migration [4-6]. In the study of diurnal birds, where the homing pigeon, Columba livia, has been the main model, a time-compensated sun compass [7] is central to the two-step map-and-compass process of navigation from unfamiliar places, as well as guiding movement via a representation of familiar area landmarks [8-12]. However, its use by an actively navigating wild bird is yet to be shown. By phase shifting an animal's endogenous clock, known as clock-shifting [13-15], sun-compass use can be demonstrated when the animal incorrectly consults the sun's azimuthal position while homing after experimental displacement [15-17]. By applying clock-shift techniques at the nest of a wild bird during natural incubation, we show here that an oceanic navigator-the Manx shearwater, Puffinus puffinus-incorporates information from a time-compensated sun compass during homeward guidance to the breeding colony after displacement. Consistently with homing pigeons navigating within their familiar area [8, 9, 11, 18], we find that the effect of clock shift, while statistically robust, is partial in nature, possibly indicating the incorporation of guidance from landmarks into movement decisions.


Subject(s)
Birds/physiology , Circadian Clocks , Orientation, Spatial , Solar System , Spatial Navigation , Animals , Taxis Response , Wales
16.
Ecol Evol ; 7(23): 10252-10265, 2017 12.
Article in English | MEDLINE | ID: mdl-29238552

ABSTRACT

Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills (Alca torda, N = 5, from Fair Isle, UK) and common guillemots (Uria aalge, N = 2 from Fair Isle and N = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive (N = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives (N = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

17.
Naturwissenschaften ; 104(11-12): 103, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29143134

ABSTRACT

Bottleneck episodes may occur in small and isolated animal populations, which may result in decreased genetic diversity and increased inbreeding, but also in mating strategy adjustment. This was evaluated in the vulnerable and socially monogamous Monteiro's Storm-petrel Hydrobates monteiroi, a seabird endemic to the Azores archipelago which has suffered a dramatic population decline since the XVth century. To do this, we conducted a genetic study (18 microsatellite markers) in the population from Praia islet, which has been monitored over 16 years. We found no evidence that a genetic bottleneck was associated with this demographic decline. Monteiro's Storm-petrels paired randomly with respect to genetic relatedness and body measurements. Pair fecundity was unrelated to genetic relatedness between partners. We detected only two cases of extra-pair parentage associated with an extra-pair copulation (out of 71 offspring). Unsuccessful pairs were most likely to divorce the next year, but genetic relatedness between pair mates and pair breeding experience did not influence divorce. Divorce enabled individuals to improve their reproductive performances after re-mating only when the new partner was experienced. Re-pairing with an experienced partner occurred more frequently when divorcees changed nest than when they retained their nest. This study shows that even in strongly reduced populations, genetic diversity can be maintained, inbreeding does not necessarily occur, and random pairing is not risky in terms of pair lifetime reproductive success. Given, however, that we found no clear phenotypic mate choice criteria, the part played by non-morphological traits should be assessed more accurately in order to better understand seabird mating strategies.


Subject(s)
Birds/physiology , Sexual Behavior, Animal/physiology , Animals , Azores , Birds/genetics , Female , Genetic Variation , Male , Microsatellite Repeats/genetics , Population Density
18.
Ecol Appl ; 27(7): 2074-2091, 2017 10.
Article in English | MEDLINE | ID: mdl-28653410

ABSTRACT

Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.


Subject(s)
Animal Distribution , Birds/physiology , Feeding Behavior , Nesting Behavior , Animals , Charadriiformes/physiology , Ireland , Models, Biological , Population Density , United Kingdom
19.
Glob Chang Biol ; 23(4): 1400-1414, 2017 04.
Article in English | MEDLINE | ID: mdl-27670638

ABSTRACT

Phenological changes in key seasonally expressed life-history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long-term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955-2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long-distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross-correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life-history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long-term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected.


Subject(s)
Animal Migration , Birds , Animals , Environment , Scotland , Seasons
20.
Ibis (Lond 1859) ; 158(4): 834-843, 2016 10.
Article in English | MEDLINE | ID: mdl-27708454

ABSTRACT

Repeated exposure to elevated levels of glucocorticoids during development can have long-term detrimental effects on survival and fitness, potentially associated with increased telomere attrition. Nestling birds are regularly handled for ecological research, yet few authors have considered the potential for handling-induced stress to influence hormonally mediated phenotypic development or bias interpretations of subsequent focal measurements. We experimentally manipulated the handling experience of the semi-precocial nestlings of European Storm Petrel Hydrobates pelagicus to simulate handling in a typical field study and examined cumulative effects on physiology and condition in late postnatal development. Neither baseline corticosterone (the primary glucocorticoid in birds), telomere length nor body condition varied with the number of handling episodes. The absence of a response could be explained if Storm Petrels did not perceive handling to be stressful or if there is dissociation of the hypothalamic-pituitary-adrenal axis from stressful stimuli in early life. Eliciting a response to a stressor may be maladaptive for cavity-dwelling young that are unable to escape or defend themselves. Furthermore, avoiding elevated overall glucocorticoid exposure may be particularly important in a long-lived species, in which accelerated early-life telomere erosion could impact negatively upon longevity. We propose that the level of colony-wide disturbance induced by investigator handling of young could be important in underlining species-specific responses. Storm Petrel nestlings appear unresponsive to investigator handling within the limits of handling in a typical field study and handling at this level should not bias physiological and morphological measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...