Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 160: 41-54, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28034766

ABSTRACT

Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Connectome/methods , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
2.
Neuroimage Clin ; 12: 785-795, 2016.
Article in English | MEDLINE | ID: mdl-27812505

ABSTRACT

Resting-state functional MRI (rs-fMRI) opens a window on large-scale organization of brain function. However, establishing relationships between resting-state brain activity and cognitive or clinical scores is still a difficult task, in particular in terms of prediction as would be meaningful for clinical applications such as early diagnosis of Alzheimer's disease. In this work, we employed partial least square regression under cross-validation scheme to predict episodic memory performance from functional connectivity (FC) patterns in a set of fifty-five MCI subjects for whom rs-fMRI acquisition and neuropsychological evaluation was carried out. We show that a newly introduced FC measure capturing the moments of anti-correlation between brain areas, discordance, contains key information to predict long-term memory scores in MCI patients, and performs better than standard measures of correlation to do so. Our results highlighted that stronger discordance within default mode network (DMN) areas, as well as across DMN, attentional and limbic networks, favor episodic memory performance in MCI.


Subject(s)
Cognitive Dysfunction/physiopathology , Connectome/methods , Memory, Long-Term/physiology , Aged , Aged, 80 and over , Cognitive Dysfunction/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...