Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 56(5): 893-901, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38181211

ABSTRACT

INTRODUCTION: A recent study showed that cadence modulation during short eccentric cycling exercise affects oxygen consumption (V̇O 2 ), muscular activity (EMG), and perception of effort (PE). This study examined the effect of cadence on V̇O 2 , EMG, and PE during prolonged eccentric cycling and exercise-induced neuromuscular alterations. METHODS: Twenty-two participants completed three sessions 2-3 wk apart: 1) determination of the maximal concentric peak power output, familiarization with eccentric cycling at two cadences (30 and 60 rpm at 60% peak power output), and neuromuscular testing procedure; 2) and 3) 30 min of eccentric cycling exercise at a cadence of 30 or 60 rpm. PE, cardiorespiratory parameters, and vastus lateralis and rectus femoris EMG were collected during exercise. The knee extensors' maximal voluntary contraction torque, the torque evoked by double stimulations at 100 Hz (Dt100) and 10 Hz (Dt10), and the voluntary activation level were evaluated before and after exercise. RESULTS: V̇O 2 , EMG, and PE were greater at 30 than 60 rpm (all P < 0.05). Maximal voluntary contraction torque, evoked torque, and Dt10/Dt100 ratio decreased (all P < 0.01) without cadence effect (all P > 0.28). Voluntary activation level remained constant after both eccentric cycling exercises ( P = 0.87). CONCLUSIONS: When performed at the same power output, eccentric cycling exercise at 30 rpm elicited a greater PE, EMG, and cardiorespiratory demands than pedaling at 60 rpm. Exercise-induced fatigability was similar in both eccentric cycling conditions without neural impairments, suggesting that eccentric cycling seemed to alter more specifically muscular function, such as the excitation-contraction coupling process. In a rehabilitation context, eccentric cycling at 60 rpm seems more appropriate because it will induce lower PE for similar strength loss compared with 30 rpm.


Subject(s)
Knee , Muscle Contraction , Humans , Muscle Contraction/physiology , Electromyography/methods , Knee/physiology , Lower Extremity/physiology , Bicycling/physiology , Perception , Muscle, Skeletal/physiology , Torque
2.
Med Sci Sports Exerc ; 55(6): 1105-1113, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36719652

ABSTRACT

INTRODUCTION: The effect of cadence in eccentric (ECC) cycling on physiological and perceptual responses is, to date, poorly understood. This study aimed to evaluate the effect of cadence during ECC cycling on muscular activation (EMG), oxygen consumption (V̇O 2 ), and perceived effort (PE) for two different levels of power output. METHODS: Seventeen participants completed four sessions 1 wk apart: 1) determination of the maximal concentric peak power output (PPO) and familiarization with ECC cycling at five cadences (30, 45, 60, 75, and 90 rpm); 2) second familiarization with ECC cycling; 3) and 4) ECC cycling exercise consisting of 5 min at the five different cadences at either 40% or 60% PPO. PE was reported, and V̇O 2 and EMG of seven muscles were calculated over the exercise's last minute. RESULTS: PE, V̇O 2 , and global lower limb muscles activation (EMG ALL ) showed an effect of cadence ( P < 0.001) and followed a curvilinear function. Both low and high cadences increased PE and V̇O 2 responses compared with intermediate cadences. Although muscle activation of vastus lateralis follows a U-shaped curve with cadence, it was greater at low cadence for rectus femoris and biceps femoris, greater at high cadence for tibialis anterior and gastrocnemius medialis, and was not altered for soleus. The estimated optimal cadence was greater (all P < 0.01) for V̇O 2 (64.5 ± 7.9 rpm) than PE (61.7 ± 9.4 rpm) and EMG ALL (55.9 ± 9.3 rpm), but power output had no effect on the optimal cadences. CONCLUSIONS: The physiological and perceptual responses to changes in cadence during ECC cycling followed a U-shaped curve with an optimal cadence depending on the parameter considered.


Subject(s)
Muscle, Skeletal , Quadriceps Muscle , Humans , Electromyography , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Lower Extremity/physiology , Exercise , Oxygen Consumption/physiology , Bicycling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...