Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochemistry (Mosc) ; 85(6): 679-688, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32586231

ABSTRACT

# Deceased. Cryptophyte algae belong to a special group of oxygenic photosynthetic organisms containing pigment combination unique for plastids - phycobiliproteins and chlorophyll a/c-containing antenna. Despite the progress in investigation of morphological and ecological features, as well as genome-based systematics of cryptophytes, their photosynthetic apparatus remains poorly understood. The ratio of the photosystems (PS)s I and II is unknown and information on participation of the two antennal complexes in functions of the two photosystems is inconsistent. In the present work we demonstrated for the first time that the cryptophyte alga Rhodomonas salina had the PSI to PSII ratio in thylakoid membranes equal to 1 : 4, whereas this ratio in cyanobacteria and higher plants was known to be 3 : 1 and 1 : 1, respectively. Furthermore, it was established that contrary to the case of cyanobacteria the phycobiliprotein antenna represented by phycoerythrin-545 (PE-545) in R. salina was associated only with the PSII, which indicated specific spatial organization of these protein pigments within the thylakoids that did not facilitate interaction with the PSI.


Subject(s)
Cryptophyta/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Phycoerythrin/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Light , Plastids/metabolism , Thylakoids/metabolism
2.
Biochemistry (Mosc) ; 80(10): 1254-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26567568

ABSTRACT

Hlip (high light-inducible proteins) are important for protection of the photosynthetic apparatus of cyanobacteria from light stress. However, the interaction of these proteins with chlorophyll-protein complexes of thylakoids remains unclear. The association of HliA/HliB stress proteins with photosystem 1 (PS1) complexes of the cyanobacterium Synechocystis PCC 6803 was studied to understand their function. Western blotting demonstrated that stress-induced HliA/HliB proteins are associated with PS1 trimers in wild-type cells grown under moderate light condition (40 µmol photons/m(2) per sec). The content of these proteins increased 1.7-fold after light stress (150 µmol photons/m(2) per sec) for 1 h. In the absence of PS1 trimers (ΔpsaL mutant), the HliA/HliB proteins are associated with PS1 monomers and the PS2 complex. HliA/HliB proteins are associated with PS1 monomers but not with PS1 trimers in Synechocystis PS2-deficient mutant grown at 5 µmol photons/m(2) per sec; the content of Hli proteins associated with PS1 monomers increased 1.2-fold after light stress. The HliA/HliB proteins were not detected in wild-type cells of cyanobacteria grown in glucose-supplemented medium at 5 µmol photons/m(2) per sec, but light stress induces the synthesis of stress proteins associated with PS1 trimers. Thus, for the first time, the association of HliA/HliB proteins not only with PS1 trimers, but also with PS1 monomers is shown, which suggests a universal role of these proteins in the protection of the photosynthetic apparatus from excess light.


Subject(s)
Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Light , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Protein Multimerization , Synechocystis/metabolism , Synechocystis/radiation effects , Cell Proliferation/radiation effects , Chlorophyll/metabolism , Mutation , Photosystem II Protein Complex/genetics , Protein Structure, Quaternary , Solubility , Synechocystis/cytology , Synechocystis/genetics , Thylakoids/metabolism , Thylakoids/radiation effects
3.
Biochemistry (Mosc) ; 79(3): 213-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24821447

ABSTRACT

The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.


Subject(s)
Bacterial Proteins/chemistry , Chlorophyll/chemistry , Cyanobacteria/metabolism , Photosystem I Protein Complex/chemistry , Bacterial Proteins/metabolism , Energy Transfer , Kinetics , Photosystem I Protein Complex/metabolism
4.
J Photochem Photobiol B ; 133: 153-60, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24727864

ABSTRACT

Long-wavelength allophycocyanin (APC) subunits in cyanobacteria (APCD, APCE, and APCF) are required for phycobilisome (PBS) assembly, stability, and energy transfer to photosystems. Here we studied fluorescence properties of PBS in vivo, using Synechocystis PCC 6803 mutant cells deficient in both photosystems and/or long-wavelength APC subunits. At room temperature, an absence of APCD and APCF subunits resulted in ∼2-fold decrease of long-wavelength APC (APC680) fluorescence. In 77K fluorescence spectra, we observed only a slight shift of long-wavelength emission. However, 77K fluorescence of a PSI/PSII/APCF-less mutant was also characterized by increased emission from short-wavelength APC, which suggested the importance of this subunit in energy transfer from APC660 to APC680. Under blue-green actinic light, all mutants showed significant non-photochemical fluorescence quenching of up to 80% of the initial dark fluorescence level. Based on the mutants' quenching spectra, we determined quenching to originate from the pool of short-wavelength APC, while the spectral data alone was not sufficient to make unambiguous conclusion on the involvement of long-wavelength APC in non-photochemical quenching. Using a model of quenching center formation, we determined interaction rates between PBS and orange carotenoid protein (OCP) in vivo. Absence of APCD or APCF subunits had no effect on the rates of quenching center formation confirming the data obtained for isolated OCP-PBS complexes. Thus, although APCD and APCF subunits were required for energy transfer in PBS in vivo, their absence did not affect rates of OCP-PBS binding.


Subject(s)
Bacterial Proteins/chemistry , Phycobilisomes/chemistry , Phycocyanin/chemistry , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Kinetics , Light , Mutation , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Phycobilisomes/metabolism , Spectrometry, Fluorescence , Temperature
5.
Biochemistry (Mosc) ; 76(4): 427-37, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21585318

ABSTRACT

The rate of PSI mediated cyclic electron transport was studied in wild type and mutant cells of Synechocystis sp. PCC 6803 deficient in NDH-1 (M55) or succinate dehydrogenase (SDH(-)) that are responsible for the dark reduction of the plastoquinone pool. Kinetics of P700 photooxidation and P700(+) dark reduction in the presence of 5·10(-5) M 3-(3,4-dichlorophenyl)-1,1-dimethylurea have been registered as light induced absorbance changes at 810 nm resulting from illumination of cells with 730-nm actinic light for 1 sec. It is shown that in the absence of dehydrogenases the rate of dark reduction of P700(+) in both mutants did not decrease but even increased in NDH-1-less mutant cells as compared with the rate in wild type cells. Dibromothymoquinone drastically reduced the rate of P700(+) dark reduction both in wild type and in mutant cells. Thus, the cyclic electron transfer from ferredoxin through the plastoquinone pool to P700(+), which is independent from dehydrogenases, takes place in all the types of cells. Preillumination of cells of wild type and both mutants for 30 min or anaerobic conditions resulted in delay of P700 photooxidation and acceleration of P700(+) dark reduction, while the level of photosynthesis and respiration terminal acceptors (NAD(P)(+) and oxygen) decreased. It appears that the rate of P700 photooxidation and P700(+) dark reduction in cyclic electron transport in Synechocystis wild type and mutant cells is determined by the level of NADP+ and oxygen in stroma. A possible approach to evaluation of the levels of these acceptors in vivo is proposed, based on kinetic curve parameters of P700 photoconversions induced by 730-nm light with 1-sec duration.


Subject(s)
Cyanobacteria/metabolism , NADH Dehydrogenase/genetics , Photosystem I Protein Complex/metabolism , Succinate Dehydrogenase/genetics , Cyanobacteria/genetics , Electron Transport , Gene Knockout Techniques , NADH Dehydrogenase/metabolism , Oxidation-Reduction , Plastoquinone/metabolism , Succinate Dehydrogenase/metabolism
6.
Biochemistry (Mosc) ; 72(3): 275-81, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17447880

ABSTRACT

Effects of oxygen and photosynthesis and respiration inhibitors on the electron transport in photosystem I (PSI) of the cyanobacterium Arthrospira platensis cells were studied. Redox transients of P700 were induced by illumination at 730 nm and monitored as kinetics of the absorption changes at 810 nm; to block electron influx from PSII, the measurements were performed in the presence of 30 microM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Inhibitors of terminal oxidases (potassium cyanide and pentachlorophenol) insignificantly influenced the fast oxidation of P700 under aerobic conditions, whereas removal of oxygen significantly decelerated the accumulation of P700(+). In the absence of oxygen the slow oxidation of P700 observed on the first illumination was accelerated on each subsequent illumination, suggesting an activation of the carbon cycle enzymes. Under the same conditions, pentachlorophenol (an uncoupler) markedly accelerated the P700 photooxidation. Under anaerobic conditions, potassium cyanide (an inhibitor of carbon dioxide assimilation) failed to influence the kinetics of redox transients of P700, whereas iodoacetamide (an inhibitor of NADP(H)-glyceraldehyde-3-phosphate dehydrogenase) completely prevented the photooxidation of P700. Thus, the fast photooxidation of P700 in the A. platensis cells under aerobic conditions in the presence of DCMU was caused by electron transport from PSI onto oxygen, and complicated transient changes in the P700 photooxidation kinetics under anaerobic conditions (in the presence of DCMU) were due to involvement of NADP+ generated during the reducing phase of the carbon cycle.


Subject(s)
Carbon/metabolism , Cyanobacteria/metabolism , Oxygen/pharmacology , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Aerobiosis , Anaerobiosis , Cyanobacteria/drug effects , Cyanobacteria/radiation effects , Diuron/pharmacology , Electron Transport/drug effects , Electron Transport/radiation effects , Kinetics , NADP/metabolism , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxygen/metabolism , Pentachlorophenol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...