Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37796616

ABSTRACT

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Subject(s)
Brain Diseases , Granulosa Cell Tumor , Ovarian Neoplasms , Female , Humans , Animals , Mice , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Granulosa Cell Tumor/genetics , Mutation , Aneuploidy
2.
Nat Commun ; 14(1): 5671, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704658

ABSTRACT

The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.


Subject(s)
Cilia , Membrane Proteins , Animals , Mice , Membrane Proteins/genetics , Rhodopsin/genetics , Neurites , Coloring Agents , Mice, Knockout
3.
Ophthalmologie ; 120(12): 1251-1257, 2023 Dec.
Article in German | MEDLINE | ID: mdl-37606831

ABSTRACT

BACKGROUND: Inherited retinal diseases (IRD) are rare eye diseases and pose high diagnostic challenges. A care structure with few highly specialized centers in Germany, misdiagnosis due to the lack of molecular genetic testing, and a lack of a central registry lead to a lack of reliable information on the prevalence and distribution of IRDs in Germany. METHODS: Based on clinical data from an ophthalmological center and molecular data from a genetic center as well as a nationwide health insurance data query, we estimated the prevalence of IRDs in Germany in addition to collecting information on their phenotypic and genotypic distribution. RESULTS: The median travelling distance to the ophthalmological center was 60 km. The most frequent diagnoses were retinitis pigmentosa, macular dystrophy and general retinal dystrophy. Molecular genetic testing was performed in 87% of patients with clinical suspicion of IRD, with marked differences in frequencies among age cohorts. The molecular genetic detection rate in the genetic center was 51%. The prevalence of inherited retinal dystrophy in Germany determined by health insurance data retrieval was approximately 1:1150. CONCLUSION: Many patients must travel long distances to visit specialized clinics for IRDs with access to genetic testing. To obtain more reliable numbers on the prevalence in Germany, routine molecular genetic testing, and a national registry for IRD detection are needed.


Subject(s)
Retinal Dystrophies , Retinitis Pigmentosa , Humans , Mutation , Retina , Retinal Dystrophies/diagnosis , Retinitis Pigmentosa/genetics , Genetic Testing
4.
J Hum Genet ; 68(9): 607-613, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37106064

ABSTRACT

WLS (Wnt ligand secretion mediator or Wntless) orchestrates the secretion of all Wnt proteins, a family of evolutionary conserved proteins, involved in Wnt signaling pathway that has many essential biological functions including the regulation of development, cell proliferation, migration and apoptosis. Biallelic variants in WLS have recently been described in 10 patients with pleiotropic multiple congenital anomalies (MCA) known as Zaki syndrome. We identified a likely disease-causing variant in WLS (c.1579G>A, p.Gly527Arg) in a boy presented with a broad range of MCA including microcephaly, facial dysmorphism, alopecia, ophthalmologic anomalies, and complete soft tissue syndactyly. These features were reminiscent of Zaki syndrome although variable clinical severity was observed. In a detailed clinical assessment, our patient also displayed microphthalmia, dental anomalies, skeletal dysplasia with spontaneous fractures and Dandy-Walker malformation. As such, we extend the phenotype linked to Zaki syndrome. This study further highlights the importance of a thorough clinical evaluation to delineate the phenotypic spectrum associated with WLS variants and suggests that genotype-phenotype correlations due to variant localization seems likely. However, future work on additional patients and more functional studies may give further insights into genotype-phenotype correlations and the complex function of WLS.


Subject(s)
Receptors, G-Protein-Coupled , Apoptosis , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Humans
5.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-36862503

ABSTRACT

Defects in primary or motile cilia result in a variety of human pathologies, and retinal degeneration is frequently associated with these so-called ciliopathies. We found that homozygosity for a truncating variant in CEP162, a centrosome and microtubule-associated protein required for transition zone assembly during ciliogenesis and neuronal differentiation in the retina, caused late-onset retinitis pigmentosa in 2 unrelated families. The mutant CEP162-E646R*5 protein was expressed and properly localized to the mitotic spindle, but it was missing from the basal body in primary and photoreceptor cilia. This impaired recruitment of transition zone components to the basal body and corresponded to complete loss of CEP162 function at the ciliary compartment, reflected by delayed formation of dysmorphic cilia. In contrast, shRNA knockdown of Cep162 in the developing mouse retina increased cell death, which was rescued by expression of CEP162-E646R*5, indicating that the mutant retains its role for retinal neurogenesis. Human retinal degeneration thus resulted from specific loss of the ciliary function of CEP162.


Subject(s)
Retinal Degeneration , Animals , Humans , Mice , Centrosome/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/genetics , Neurogenesis/genetics , Retina/metabolism , Retinal Degeneration/metabolism
6.
Article in English | MEDLINE | ID: mdl-36307213

ABSTRACT

Neonatal Marfan syndrome (nMFS) is a rare and severe form of Marfan syndrome (MFS) with a poor prognosis, that presents with a highly variable phenotype, particularly regarding skeletal, ocular, and cardiovascular manifestations. Mutations in the fibrillin-1 (FBN1) gene are known as the principal cause of MFS and MFS-related syndromes. Here, we report on a full-term female neonate with postnatal characteristics suggestive of nMFS, including severe cardiovascular disease resulting in cardiorespiratory failure and death by 4 mo of age. We identified a novel large genomic in-frame deletion of FBN1 exons 42-45, c.(5065 + 1_5066 - 1)_(5545 + 1_5546 - 1)del. Large FBN1 in-frame deletions between exons 24 and 53 have been associated with severe MFS. The deletion in our patient differs from the FBN1 region associated with the majority of nMFS cases, exons 24-32.


Subject(s)
Marfan Syndrome , Female , Humans , Exons/genetics , Fibrillin-1/genetics , Marfan Syndrome/genetics , Mutation , Phenotype , Sequence Deletion/genetics
7.
J Hum Genet ; 67(1): 55-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34354232

ABSTRACT

Biallelic pathogenic variants of OTUD6B have recently been described to cause intellectual disability (ID) with seizures. Here, we report the clinical and molecular characterization of five additional patients (from two unrelated Egyptian families) with ID due to homozygous OTUD6B variants. In Family I, the two affected brothers had additional retinal degeneration, a symptom not yet reported in OTUD6B-related ID. Whole-exome sequencing (WES) identified a novel nonsense variant in OTUD6B (c.271C>T, p.(Gln91Ter)), but also a nonsense variant in RP1L1 (c.5959C>T, p.(Gln1987Ter)), all in homozygous state. Biallelic pathogenic variants in RP1L1 cause autosomal recessive retinitis pigmentosa type 88 (RP88). Thus, RP1L1 dysfunction likely accounts for the visual phenotype in this family with two simultaneous autosomal recessive disorders. In Family II, targeted sequencing revealed a novel homozygous missense variant (c.767G>T, p.(Gly256Val)), confirming the clinically suspected OTUD6B-related ID. Consistent with the clinical variability in previously reported OTUD6B patients, our patients showed inter- and intrafamilial differences with regard to the clinical and brain imaging findings. Interestingly, various orodental features were present including macrodontia, dental crowding, abnormally shaped teeth, and thick alveolar ridges. Broad distal phalanges (especially the thumbs and halluces) with prominent interphalangeal joints and fetal pads were recognized in all patients and hence considered pathognomonic. Our study extends the spectrum of the OTUD6B-associated phenotype. Retinal degeneration, albeit present in both patients from Family I, was shown to be unrelated to OTUD6B, demonstrating the need for in-depth analysis of WES data in consanguineous families to uncover simultaneous autosomal recessive disorders.


Subject(s)
Endopeptidases/genetics , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , Phenotype , Alleles , Genetic Association Studies , Genotype , Humans , Retinal Degeneration/genetics , Exome Sequencing
8.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34245260

ABSTRACT

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Subject(s)
Developmental Disabilities/etiology , Developmental Disabilities/metabolism , Genetic Variation , Ion Channel Gating , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Alleles , Amino Acid Substitution , Biomarkers , Developmental Disabilities/diagnosis , Disease Susceptibility , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Phenotype , Protein Subunits , Shal Potassium Channels/chemistry
9.
Kidney Int ; 100(5): 1092-1100, 2021 11.
Article in English | MEDLINE | ID: mdl-34153329

ABSTRACT

Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Kidney Diseases, Cystic/genetics , Retinal Diseases , Electroretinography , Fluorescein Angiography , Humans , Retinal Diseases/genetics , Tomography, Optical Coherence , Visual Fields
10.
Klin Monbl Augenheilkd ; 238(3): 261-266, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33784789

ABSTRACT

Over the past decade, novel high-throughput DNA sequencing technologies have revolutionised both research and diagnostic testing for monogenic disorders. This applies particularly to genetically very heterogeneous disorders like retinal dystrophies (RDs). Next-generation sequencing (NGS) today is considered as reliable as Sanger sequencing, which had been the gold standard for decades. Today, comprehensive NGS-based diagnostic testing reveals the causative mutations in the majority of RD patients, with important implications for genetic counselling for recurrence risks and personalised medical management (from interdisciplinary surveillance to prophylactic measures and, albeit yet rare, [gene] therapy). While DNA sequencing is - in most cases - no longer the diagnostic bottleneck, one needs to be aware of interpretation pitfalls and dead ends. The advent of new (NGS) technologies will solve some of these issues. However, specialised medical geneticists who are familiar with the peculiarities of certain RD genes and closely interact with ophthalmologists will remain key to successful RD research and diagnostic testing for the benefit of the patients. This review sheds light on the current state of the field, its challenges and potential solutions.


Subject(s)
Retinal Dystrophies , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Sequence Analysis, DNA
11.
Klin Monbl Augenheilkd ; 237(3): 239-247, 2020 Mar.
Article in German | MEDLINE | ID: mdl-32182628

ABSTRACT

The Bardet-Biedl syndrome (BBS) is a rare inherited ciliopathy, which is accompanied by retinal disease, i.e. rod-cone dystrophy (retinitis pigmentosa, RP) and other symptoms, especially truncal obesity, polydactyly, renal abnormalities as well as reduced intelligence or learning difficulties. 25 BBS genes are currently known, and these are responsible for the structure and function of primary cilia. Because ciliary integrity is crucial for numerous pathways of developmental signaling, their dysfunction may cause multisystemic disorders - like BBS. Physicians benefit greatly from new molecular genetic methods that have made genetically heterogeneous conditions diagnostically accessible: By next-generation sequencing (NGS), all BBS-associated genes can be analysed simultaneously in a gene panel. As regards the retinal phenotype, genotype-phenotype correlations are not significant. Besides classical autosomal recessive inheritance, oligogenic/triallelic traits have been reported, but these seem to play a minor role, if any (as a growing number of large-scale NGS-based studies suggests). In the absence of causal therapy, the mainstay of ophthalmological endeavour is focused on visual rehabilitation with low vision aids, use of the white cane and training to develop everyday life skills.


Subject(s)
Bardet-Biedl Syndrome , Retinitis Pigmentosa , Follow-Up Studies , Genetic Association Studies , Humans , Phenotype
12.
Ophthalmol Retina ; 4(5): 523-529, 2020 05.
Article in English | MEDLINE | ID: mdl-32147488

ABSTRACT

PURPOSE: To demonstrate that peripapillary sparing on autofluorescence images is a characteristic feature of autosomal recessive bestrophinopathy (ARB). DESIGN: Retrospective, cross-sectional case series and review of previous published cases. PARTICIPANTS: Twelve patients with ARB. METHODS: Ophthalmic assessment included best-corrected visual acuity testing, electrophysiologic examinations, and multimodal retinal imaging. Retinal imaging included OCT, blue-light autofluorescence imaging, fundus photography, and widefield pseudocolor and autofluorescence fundus imaging. MAIN OUTCOME MEASURES: Presence of peripapillary sparing on fundus autofluorescence images. RESULTS: Relatively normal-appearing peripapillary autofluorescence was identified in all patients, independent of the disease stage or presence of widespread changes on autofluorescence widefield images. OCT images of the peripapillary region revealed mild structural abnormalities, including a thinned outer nuclear layer and intraretinal or subretinal fluid. A review of previously published cases confirmed peripapillary sparing as consistent feature on fundus autofluorescence images. Genetic analysis revealed 10 previously reported mutations, 1 novel missense (c.83T>A; p.Ile28Asn) and 2 novel truncating (c.658C>T; p.Gln220* and c.1370C>G; p.Ser457*) variants in BEST1. CONCLUSIONS: In ARB patients, peripapillary sparing is a consistent feature on fundus autofluorescence images, whereas the same region is less preserved on OCT images.


Subject(s)
Eye Diseases, Hereditary/diagnosis , Fluorescein Angiography/methods , Retina/pathology , Retinal Diseases/diagnosis , Tomography, Optical Coherence/methods , Adolescent , Adult , Aged , Bestrophins/genetics , Bestrophins/metabolism , Cross-Sectional Studies , Electroretinography , Eye Diseases, Hereditary/genetics , Female , Fundus Oculi , Humans , Male , Middle Aged , Optic Disk/pathology , Retinal Diseases/genetics , Retrospective Studies , Young Adult
13.
Genes (Basel) ; 11(2)2020 01 28.
Article in English | MEDLINE | ID: mdl-32013026

ABSTRACT

Inherited retinal dystrophies (IRDs) are characterized by high clinical and genetic heterogeneity. A precise characterization is desirable for diagnosis and has impact on prognosis, patient counseling, and potential therapeutic options. Here, we demonstrate the effectiveness of the combination of in-depth retinal phenotyping and molecular genetic testing in complex pedigrees with different IRDs. Four affected Caucasians and two unaffected relatives were characterized including multimodal retinal imaging, functional testing, and targeted next-generation sequencing. A considerable intrafamilial phenotypic and genotypic heterogeneity was identified. While the parents of the index family presented with rod-cone dystrophy and ABCA4-related retinopathy, their two sons revealed characteristics in the spectrum of incomplete congenital stationary night blindness and ocular albinism, respectively. Molecular testing revealed previously described variants in RHO, ABCA4, and MITF as well as a novel variant in CACNA1F. Identified variants were verified by intrafamilial co-segregation, bioinformatic annotations, and in silico analysis. The coexistence of four independent IRDs caused by distinct mutations and inheritance modes in one pedigree is demonstrated. These findings highlight the complexity of IRDs and underscore the need for the combination of extensive molecular genetic testing and clinical characterization. In addition, a novel variant in the CACNA1F gene is reported associated with incomplete congenital stationary night blindness.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Albinism, Ocular/diagnosis , Calcium Channels, L-Type/genetics , Cone-Rod Dystrophies/diagnosis , Eye Diseases, Hereditary/diagnosis , Genetic Diseases, X-Linked/diagnosis , Microphthalmia-Associated Transcription Factor/genetics , Myopia/diagnosis , Night Blindness/diagnosis , Adolescent , Albinism, Ocular/genetics , Child , Cone-Rod Dystrophies/genetics , Eye Diseases, Hereditary/genetics , Female , Fluorescein Angiography , Genetic Diseases, X-Linked/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Myopia/genetics , Night Blindness/genetics , Parents , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
14.
J Transl Med ; 17(1): 351, 2019 10 26.
Article in English | MEDLINE | ID: mdl-31655630

ABSTRACT

BACKGROUND: Biallelic PTPRQ pathogenic variants have been previously reported as causative for autosomal recessive non-syndromic hearing loss. In 2018 the first heterozygous PTPRQ variant has been implicated in the development of autosomal dominant non-syndromic hearing loss (ADNSHL) in a German family. The study presented the only, so far known, PTPRQ pathogenic variant (c.6881G>A) in ADNSHL. It is located in the last PTPRQ coding exon and introduces a premature stop codon (p.Trp2294*). METHODS: A five-generation Polish family with ADNSHL was recruited for the study (n = 14). Thorough audiological, neurotological and imaging studies were carried out to precisely define the phenotype. Genomic DNA was isolated from peripheral blood samples or buccal swabs of available family members. Clinical exome sequencing was conducted for the proband. Family segregation analysis of the identified variants was performed using Sanger sequencing. Single nucleotide polymorphism array on DNA samples from the Polish and the original German family was used for genome-wide linkage analysis. RESULTS: Combining clinical exome sequencing and family segregation analysis, we have identified the same (NM_001145026.2:c.6881G>A, NP_001138498.1:p.Trp2294*) PTPRQ alteration in the Polish ADNSHL family. Using genome-wide linkage analysis, we found that the studied family and the original German family derive from a common ancestor. Deep phenotyping of the affected individuals showed that in contrast to the recessive form, the PTPRQ-related ADNSHL is not associated with vestibular dysfunction. In both families ADNSHL was progressive, affected mainly high frequencies and had a variable age of onset. CONCLUSION: Our data provide the first confirmation of PTPRQ involvement in ADNSHL. The finding strongly reinforces the inclusion of PTPRQ to the small set of genes leading to both autosomal recessive and dominant hearing loss.


Subject(s)
Hearing Loss, Sensorineural/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Adolescent , Adult , Age of Onset , Child , Female , Genes, Dominant , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Humans , Male , Middle Aged , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/physiology , Mutation , Pedigree , Peptide Chain Termination, Translational/genetics , Phenotype , Poland , Polymorphism, Single Nucleotide , Receptor-Like Protein Tyrosine Phosphatases, Class 3/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 3/physiology , Translational Research, Biomedical , Young Adult
15.
Invest Ophthalmol Vis Sci ; 60(10): 3388-3397, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31387115

ABSTRACT

Purpose: To report the clinical and molecular findings in patients with retinal dystrophy associated with the c.783G>A variant in CDHR1. Methods: The retinal phenotype of 10 patients with CDHR1-related retinopathy was characterized by multimodal imaging including color fundus photography, optical coherence tomography (OCT), and blue- and near-infrared fundus autofluorescence imaging. Functional testing included electroretinography, visual acuity, and visual field testing. Results: Six patients homozygous for the c.783G>A variant in CDHR1 showed a retinal phenotype resembling central areolar choroidal dystrophy (CACD) on multimodal imaging. Retinal function outside an area of slowly progressive macular atrophy remained relatively preserved. In contrast, biallelic severe/truncating CDHR1 mutations result in retina-wide retinal degeneration in addition to macular atrophy, with overall severely reduced retinal function. Patients compound heterozygous for the c.783G>A mutation and a truncating mutation in CDHR1 showed an intermediate phenotype. All patients except one with biallelic severe CDHR1 mutations were asymptomatic in the first four decades of life, irrespective of their individual CDHR1 mutations. Analysis of blood RNA from patients with the c.783G>A variant revealed in-frame skipping of exon 8 in vivo, predicting a partial deletion of CDHR1 ectodomains 2 and 3. Conclusions: Patients with biallelic c.783G>A CDHR1 mutations demonstrate a retinal phenotype consistent with autosomal recessive CACD. The apparently silent dbSNP-annotated c.783G>A CDHR1 variant (rs147346345) has a relatively high minor allele frequency (0.31%), with homozygous individuals annotated in the general population, and it may therefore have been disregarded in many next-generation sequencing (NGS)-based studies. The differential diagnosis includes PRPH2-associated CACD and age-related macular degeneration.


Subject(s)
Cadherins/genetics , Nerve Tissue Proteins/genetics , Retina/pathology , Retinal Dystrophies/genetics , Silent Mutation , Aged , Cadherin Related Proteins , Electroretinography , Exons/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Multimodal Imaging , Optical Imaging , Pedigree , Phenotype , Photography , Retinal Dystrophies/diagnostic imaging , Retinal Dystrophies/pathology , Sequence Deletion/genetics , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Field Tests , Visual Fields/physiology
16.
FASEB J ; 33(10): 11507-11527, 2019 10.
Article in English | MEDLINE | ID: mdl-31345061

ABSTRACT

We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo1H-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUTp.A78E still localized in the plasma membrane but is predicted to impact structural stabilization. 3H-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Görg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmüller, J., Herebian, D., Beyer, M., Zöllner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nürnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Häussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration.


Subject(s)
Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mutation, Missense/genetics , Retinal Degeneration/metabolism , Taurine/metabolism , Biological Transport/physiology , Cell Membrane/metabolism , Cells, Cultured , Guanosine/analogs & derivatives , Guanosine/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress/physiology
17.
Clin Exp Ophthalmol ; 47(6): 779-786, 2019 08.
Article in English | MEDLINE | ID: mdl-30977268

ABSTRACT

IMPORTANCE: Uncommon characteristics in genetically unsolved retinitis pigmentosa (RP) patients may indicate an incorrect clinical diagnosis or as yet unknown genetic causes resulting in specific retinal phenotypes. The diagnostic yield of targeted next-generation sequencing may be increased by a reasonable preselection of RP-patients. BACKGROUND: To systematically evaluate and compare features of genetically solved and unsolved RP-patients. DESIGN: Retrospective, observational study. PARTICIPANTS: One-hundred and twelve consecutive RP-patients who underwent extensive molecular genetic analysis. METHODS: Characterization of patients based on multimodal imaging and medical history. MAIN OUTCOME MEASURES: Differences between genetically solved and unsolved RP-patients. RESULTS: Compared to genetically solved patients (n = 77), genetically unsolved patients (n = 35) more frequently had an age of disease-onset above 30 years (60% vs 8%; P < 0.0001), showed atypical fundus features (49% vs 8%; P < 0. 0001) and indicators for phenocopies (eg, autoimmune diseases) (17% vs 0%; P < 0. 001). Evidence for a particular inheritance pattern was less common (20% vs 49%; P < 0. 01). The diagnostic yield was 84% (71/85) in patients with first symptoms below 30 years-of-age, compared to 69% (77/112) in the overall cohort. The other selection criteria alone or in combination resulted in limited further increase of the diagnostic yield (up to 89%) while excluding considerably more patients (up to 56%) from genetic testing. CONCLUSIONS AND RELEVANCE: The medical history and retinal phenotype differ between genetically solved and a subgroup of unsolved RP-patients, which may reflect undetected genotypes or retinal conditions mimicking RP. Patient stratification may inform on the individual likelihood of identifying disease-causing mutations and may impact patient counselling.


Subject(s)
Genetic Testing , Retinitis Pigmentosa/diagnosis , Adult , Electroretinography , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Phenotype , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Fields/physiology
18.
PLoS One ; 13(12): e0207958, 2018.
Article in English | MEDLINE | ID: mdl-30543658

ABSTRACT

Retinitis pigmentosa (RP) is an inherited degenerative disease causing severe retinal dystrophy and visual impairment mainly with onset in infancy or adolescence. Targeted next-generation sequencing (NGS) has become an efficient tool to encounter the enormous genetic heterogeneity of diverse retinal dystrophies, including RP. To identify disease-causing mutations in unselected, consecutive RP patients, we conducted Sanger sequencing of genes commonly involved in the suspected genetic RP subtype, followed by targeted large-panel NGS if no mutation was identified, or NGS as primary analysis. A high (70%) detection rate of disease-causing mutations was achieved in a large cohort of 116 unrelated patients. About half (48%) of the solved RP cases were explained by mutations in four genes: RPGR, EYS, PRPF31 and USH2A. Overall, 110 different mutations distributed across 30 different genes were detected, and 46 of these mutations were novel. A molecular diagnosis was achieved in the majority (82-100%) of patients if the family history was suggestive for a particular mode of inheritance, but only in 60% in cases of sporadic RP. The diagnostic potential of extensive molecular analysis in a routine setting is also illustrated by the identification of unexpected genotype-phenotype correlations for RP patients with mutations in CRX, CEP290, RPGRIP1, MFSD8. Furthermore, we identified numerous mutations in autosomal dominant (PRPF31, PRPH2, CRX) and X-linked (RPGR) RP genes in patients with sporadic RP. Variants in RP2 and RPGR were also found in female RP patients with apparently sporadic or dominant disease. In summary, this study demonstrates that massively parallel sequencing of all known retinal dystrophy genes is a valuable diagnostic approach for RP patients.


Subject(s)
Genetic Testing/methods , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Cross-Sectional Studies , DNA Mutational Analysis/methods , Female , Genes, X-Linked/genetics , Genetic Association Studies , Germany , High-Throughput Nucleotide Sequencing/methods , Humans , Inheritance Patterns/genetics , Male , Middle Aged , Mutation , Retinitis Pigmentosa/diagnostic imaging , Retrospective Studies
19.
JAMA Ophthalmol ; 136(7): 761-769, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29800053

ABSTRACT

Importance: Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. Objective: To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. Design, Setting, and Participants: This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Main Outcomes and Measures: Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Results: Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Conclusions and Relevance: Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/genetics , Mutation , Olfaction Disorders/genetics , Retinitis Pigmentosa/genetics , Adult , Aged , DNA Mutational Analysis , Electroencephalography , Electroretinography , Female , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Olfaction Disorders/diagnosis , Olfactory Perception , Ophthalmoscopy , Phenotype , Retinitis Pigmentosa/diagnosis , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...