Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Chemistry ; 14(30): 9338-46, 2008.
Article in English | MEDLINE | ID: mdl-18756567

ABSTRACT

The use of hydrogen-bonding patterns in the same way as is known from DNA building blocks is a challenge for the construction of novel types of suitable chromophoric probes. This feature has been utilised for the construction of a novel type of UV/Vis probe for detection of supramolecular AAD or DAD sequences (A=hydrogen bond acceptor, D=hydrogen bond donor). Here we report on the structure of the enolisable chromophore 1-n-butyl-5-(4-nitrophenyl)barbituric acid (1), which has an adjustable hydrogen-bonding pattern. The position of the keto-enol equilibrium of this dye is strongly influenced both by the solvent polarity and by the chemical environment. Furthermore, the recognition properties of the barbiturate were examined by the use of seven artificial receptors: the pyridine bases 2,6-diaminopyridine (DAP), 2,6-diacetamidopyridine (DAC) and 2,6-bis(trifluoroacetamido)pyridine (TFA), as well as the nucleic acid bases 9-ethyladenine (EtAd), 9-ethylguanine (EtGu), 1-n-butylcytosine (BuCy) and 1-n-butylthymine (BuTy). It was found that 1 can interact with these bases either through acid-base interaction or by hydrogen-bonding complexation. The balance between the interactions is dependent both on the basicity strength and on the presence of a suitable recognition sequence in the base. The induced formation of the enol form of 1 thus causes a significant UV/Vis shift as function of the nature of the base.


Subject(s)
Barbiturates/chemistry , Nucleic Acids/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Spectrophotometry, Ultraviolet
3.
J Org Chem ; 73(13): 4783-93, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18540649

ABSTRACT

Complex formation of the enolizable chromophor 1-n-butyl-5-(4-nitrophenyl)barbituric acid 1 with multiple binding sites for supramolecular assemblies and its corresponding adducts produced with the Proton Sponge (1,8-bis(dimethylamino)naphthalene), PS) and the adenine-mimetic 2,6-diacetamidopyridine (DAC) have been studied by means of solid-state proton NMR spectroscopy under fast magic-angle spinning, X-ray analysis, and UV/vis spectroscopy. Both NMR data and X-ray results reveal that the enolic chromophor undergoes self-aggregation to hydrogen-bonded dimers which are involved in stacked arrangements. Depending on the nature of the added base, this dimeric assembly is preserved in the formed enolate anion but can be broken in the presence of complementary hydrogen-bonding pattern leading to supramolecular complexes. Molecular recognition of these structural different bases significantly influences the chromophoric pi-system of 1.


Subject(s)
Barbiturates/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...