Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
J Chem Inf Model ; 64(6): 1932-1944, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38437501

ABSTRACT

The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 µM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Methicillin/pharmacology , Microbial Sensitivity Tests
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37895859

ABSTRACT

The number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region. The current version of LANaPDB unifies the information from six countries and contains 12,959 chemical structures. The structural classification showed that the most abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%). From the analysis of the distribution of properties of pharmaceutical interest, it was observed that many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties. The concept of the chemical multiverse was employed to generate multiple chemical spaces from two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each database, plus the addition of databases from other Latin American countries.

3.
Commun Biol ; 6(1): 896, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653089

ABSTRACT

The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.


Subject(s)
Anthozoa , Microbiota , Seaweed , Animals , Coral Reefs , Symbiosis , Metabolome
4.
Exp Parasitol ; 250: 108542, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178971

ABSTRACT

Although new nematicides have appeared, the demand for new products less toxic and more efficient for the control of plant-parasitic nematodes are still high. Consequently, studies on natural secondary metabolites from plants, to develop new nematicides, have increased. In this work, nineteen extracts from eleven Brazilian plant species were screened for activity against Meloidogyne incognita. Among them, the extracts of Piterogyne nitens showed a potent nematostatic activity. The alkaloid fraction obtained from the ethanol extract of leaves of P. nitens was more active than the coming extract. Due to the promising activity from the alkaloid fraction, three isoprenylated guanidine alkaloids isolated from this fraction, galegine (1), pterogynidine (2), and pterogynine (3) were tested, showing similar activity to the alkaloid fraction, which was comparable to that of the positive control Temik at 250 µg/mL. At lower concentrations (125-50 µg/mL), compound 2 showed to be the most active one. As several nematicides act through inhibition of acetylcholinesterase (AChE), the guanidine alkaloids were also employed in two in vitro AChE assays. In both cases, compound 2 was more active than compounds 1 and 3. Its activity was considered moderated compared to the control (physostigmine). Compound 2 was selected for an in silico study with the electric eel (Electrophorus electricus) AChE, showing to bind mostly to the same site of physostigmine in the AChEs, pointing out that this could be the mechanism of action for this compound. These results suggested that the guanidine alkaloids 1,2 and 3 from P. nitens are promising for the development of new products to control M. incognita, especially guanidine 2, and encourage new investigations to confirm the mechanism of action, as well as to determine the structure-activity relationship of the guanidine alkaloids.


Subject(s)
Alkaloids , Fabaceae , Acetylcholinesterase , Guanidine/pharmacology , Physostigmine , Alkaloids/pharmacology , Plant Extracts/pharmacology , Guanidines/pharmacology , Antinematodal Agents/pharmacology , Cholinesterase Inhibitors/pharmacology
5.
J Nat Prod ; 86(3): 621-632, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36848642

ABSTRACT

The Aedes aegypti (Diptera: Culicidae) mosquito is the vector of several arboviruses in tropical and subtropical areas of the globe, and synthetic pesticides remain the most widely used combat strategy. This study describes the investigation of secondary metabolites with larvicidal activity from the Malpighiaceae taxon using a metabolomic and bioactivity-based approach. The workflow initially consisted of a larvicidal screening of 394 extracts from the leaves of 197 Malpighiaceae samples, which were extracted using solvents of different polarity, leading to the selection of Heteropterys umbellata for the identification of active compounds. By employing untargeted mass spectrometry-based metabolomics and multivariate analyses (PCA and PLS-DA), it was possible to determine that the metabolic profiles of different plant organs and collection sites differed significantly. A bioguided approach led to the isolation of isochlorogenic acid A (1) and the nitropropanoyl glucosides karakin (2) and 1,2,3,6-tetrakis-O-[3-nitropropanoyl]-beta-glucopyranose (3). These nitro compounds exhibited larvicidal activity, possibly potentialized by synergistic effects of their isomers in chromatographic fractions. Additionally, targeted quantification of the isolated compounds in different extracts corroborated the untargeted results from the statistical analyses. These results support a metabolomic-guided approach in combination with classical phytochemical techniques to search for natural larvicidal compounds for arboviral vector control.


Subject(s)
Aedes , Insecticides , Animals , Plant Extracts/chemistry , Insecticides/chemistry , Glycosides/pharmacology , Glycosides/analysis , Larva , Mosquito Vectors , Plant Leaves/chemistry , Mass Spectrometry , Metabolomics
6.
J Nat Prod ; 86(2): 440-459, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36638830

ABSTRACT

This review article aims to study how phytochemists have reacted to green chemistry insights since 1990, the year when the U.S. Environmental Protection Agency launched the "Pollution Prevention Act". For each year in the period 1990 to 2019, three highly cited phytochemistry papers that provided enough information about the experimental procedures utilized were sampled. The "greenness" of these procedures was assessed, particularly for the use of solvents. The highly hazardous diethyl ether, benzene, and carbon tetrachloride did not appear in the papers sampled after 2010. Advances in terms of sustainability were observed mainly in the extraction stage. Similar progress was not observed in purification procedures, where chloroform, dichloromethane, and hexane regularly have been employed. Since replacing such solvents in purification procedures should be a major goal, potential alternative approaches are discussed. Moreover, some current initiatives toward a more sustainable phytochemical research considering aspects other than only solvents are highlighted. Although some advances have been achieved, it is believed that natural products chemists can play a major role in developing a novel ecological paradigm in chemistry. To contribute to this objective, six principles for performing natural products chemistry consistent with the guidelines of green chemistry are proposed.


Subject(s)
Biological Products , Green Chemistry Technology , Green Chemistry Technology/methods , Solvents
7.
PLoS One ; 17(10): e0275002, 2022.
Article in English | MEDLINE | ID: mdl-36190979

ABSTRACT

Investigating the chemical diversity of natural products from tropical environments is an inspiring approach to developing new drug candidates for neglected tropical diseases (NTDs). In the present study, phenotypic screenings for antiprotozoal activity and a combination of computational and biological approaches enabled the identification and characterization of four cytochalasins, which are fungal metabolites from Brazilian biodiversity sources. Cytochalasins A-D exhibited IC50 values ranging from 2 to 20 µM against intracellular Trypanosoma cruzi and Leishmania infantum amastigotes, values comparable to those of the standard drugs benznidazole and miltefosine for Chagas disease and leishmaniasis, respectively. Furthermore, cytochalasins A-D reduced L. infantum infections by more than 80% in THP-1 cells, most likely due to the inhibition of phagocytosis by interactions with actin. Molecular modelling studies have provided useful insights into the mechanism of action of this class of compounds. Furthermore, cytochalasins A-D showed moderate cytotoxicity against normal cell lines (HFF-1, THP-1, and HepG2) and a good overall profile for oral bioavailability assessed in vitro. The results of this study support the use of natural products from Brazilian biodiversity sources to find potential drug candidates for two of the most important NTDs.


Subject(s)
Antiprotozoal Agents , Biological Products , Trypanosoma cruzi , Actins , Antiprotozoal Agents/chemistry , Biological Products/pharmacology , Cytochalasins , Drug Discovery , Humans , Neglected Diseases/drug therapy
8.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36044031

ABSTRACT

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Subject(s)
Biological Products , Cyclotides , Plant Proteins , Violaceae , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Brazil , Cell Line, Tumor , Cyclotides/chemistry , Cyclotides/isolation & purification , Cyclotides/pharmacology , Humans , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Tandem Mass Spectrometry , Violaceae/chemistry
9.
Pharmacol Rep ; 74(4): 752-758, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882766

ABSTRACT

BACKGROUND: Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV). To date there is no antiviral treatment against this infection or licensed vaccine to prevent it. Our study aims to evaluate whether (-)-cassine (1) and (-)-spectaline (2), the main alkaloids of Senna spectabilis, display anti-CHIKV activity. Both compounds have been described to be biologically active against neglected tropical diseases, including malaria, leishmaniasis, and schistosomiasis, which emphasizes that these molecules could be repurposed for chikungunya fever treatment. METHODS: The structures of the isolated compounds 1 and 2 were identified by NMR and HRESIMS analyses, and their antiviral activity against CHIKV was assessed by a dose-response assay employing BHK-21 cells and CHIKV-nanoluc, a recombinant virus carrying the nanoluciferase gene reporter. RESULTS: Compound 1 presented CC50 of 126.5 µM and EC50 of 14.9 µM, while compound 2 presented CC50 of 91.9 µM and EC50 of 8.3 µM. The calculated selectivity index (SI) was 8.5 for 1 and 11.3 for 2. CONCLUSION: The data presented herein show that compounds 1 and 2 have potential for being repurposed as anti-CHIKV drug. Our promising in vitro results encourage further in vitro and in vivo assays. This is the first description of the antiviral activity of compounds 1 and 2 against CHIKV infection, which can impact the development of antiviral drug candidates against chikungunya fever, which sometimes can be debilitating.


Subject(s)
Alkaloids , Chikungunya Fever , Chikungunya virus , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya Fever/drug therapy , Flowers/chemistry , Luciferases , Piperidines/pharmacology
10.
Front Plant Sci ; 13: 854842, 2022.
Article in English | MEDLINE | ID: mdl-35498703

ABSTRACT

Natural products produced by plants are one of the most investigated natural sources, which substantially contributed to the development of the natural products field. Even though these compounds are widely explored, the literature still lacks comprehensive investigations aiming to explore the evolution of secondary metabolites produced by plants, especially if classical methodologies are employed. The development of sensitive hyphenated techniques and computational tools for data processing has enabled the study of large datasets, being valuable assets for chemosystematic studies. Here, we describe a strategy for chemotaxonomic investigations using the Malpighiaceae botanical family as a model. Our workflow was based on MS/MS untargeted metabolomics, spectral searches, and recently described in silico classification tools, which were mapped into the latest molecular phylogeny accepted for this family. The metabolomic analysis revealed that different ionization modes and extraction protocols significantly impacted the chemical profiles, influencing the chemotaxonomic results. Spectral searches within public databases revealed several clades or genera-specific molecular families, being potential chemical markers for these taxa, while the in silico classification tools were able to expand the Malpighiaceae chemical space. The classes putatively annotated were used for ancestral character reconstructions, which recovered several classes of metabolites as homoplasies (i.e., non-exclusive) or synapomorphies (i.e., exclusive) for all sampled clades and genera. Our workflow combines several approaches to perform a comprehensive evolutionary chemical study. We expect it to be used on further chemotaxonomic investigations to expand chemical knowledge and reveal biological insights for compounds classes in different biological groups.

11.
Nat Prod Res ; 36(18): 4730-4734, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34809508

ABSTRACT

Eight phenolic compounds were isolated from Eugenia pyriformis leaves fraction by semi-preparative HPLC and characterized by Nuclear Magnetic Resonance (NMR) and mass spectrometry (ESI-MS). Five compounds were isolated and identified for the first time in E. pyriformis species, while this is the first report of the accumulation of isoquercitrin, quercitrin, and the aglycone quercetin in its leaves. E. pyriformis leaves and fruits extracts, as well as the compounds isolated from the leaves most active fraction, were evaluated for their antiglycation and antioxidant activities. The mixture of myricetin-3-O-(2″-O-galloyl)-α-L-rhamnoside and myricetin-3-O-(4″-O-galloyl)-α-L-rhamnoside showed the highest antiglycation activity. These results suggest that this species is a promising source of bioactive compounds. Further studies to investigate the inhibition of the glycation process in vivo are necessary to evaluate its use in the treatment and/or prevention of advanced glycation end-products (AGEs)-associated diseases.


Subject(s)
Eugenia , Antioxidants/chemistry , Eugenia/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
12.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221356, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394012

ABSTRACT

Abstract In Brazil, research with natural products had a strong impulse when FAPESP supported the creation of the Laboratory of Chemistry of Natural Products of the Institute of Chemistry of USP (1966). In 1999, FAPESP launched the Research Program in the Characterization, Conservation, Restoration and Sustainable Use of Biodiversity (BIOTA-FAPESP), which intensified the sustainable exploitation of biodiversity, and which evolved to form the Biota Network for Bioprospection and Bioassays (BIOprospecTA), which integrates groups from all over the country, optimizing the use of the skills already installed for the bioprospecting of microorganisms, plants, invertebrates, vertebrates and marine organisms. Of the 104 projects related to plant sciences, 35 carried out bioprospection of Brazilian flora, belonging to the areas of Chemistry, Botany, Genetics, Plant Physiology, Plant Morphology, Plant (Chemo)taxonomy, Ecosystem Ecology, Plant Genetics. Physical Sciences, Forest Resources, Forestry Engineering, Agronomy, leading to thousands of publications, engagement of hundreds of students and a deeper understanding of natural products in different biological models through macromolecules analysis aided by computational and spectrometric strategies, in addition to pharmacological evaluations. The development of omics approaches led to a more comprehensive view of the chemical profile of an organism, and enabled integrated and concomitant studies of several samples, and faster annotation of known molecules, through the use of hyphenated and chemometric techniques, and molecular networking. This also helped to overcome the lack of information on the safety and efficacy of herbal preparations, in projects dealing with the standardization of herbal products, according to international standards. The BIOTA-FAPESP program has also focused on environmental aspects, in accordance with the principles of Green Chemistry and has had positive effects on international collaboration, on the number and impact of scientific publications and on partnership with companies, a crucial step to add value and expand the production chain of bioproducts. Also, the compilation, systematization and sharing of data were contemplated with the creation of the NUBBEDB database, of free access, and that integrates with international databases (ACD/labs, American Chemical Society - ACS), helping researchers and companies in the development from different areas of science, technology, strengthening the bioeconomy and subsidizing public policies.


Resumo No Brasil, as pesquisas com produtos naturais tiveram um forte impulso quando a FAPESP apoiou a criação do Laboratório de Química de Produtos Naturais do Instituto de Química da USP (1966). Em 1999, a FAPESP lançou o Programa de Pesquisa em Caracterização, Conservação, Restauração e Uso Sustentável da Biodiversidade (BIOTA-FAPESP), que intensificou a exploração sustentável da biodiversidade, e que evoluiu para formar a Rede Biota de Bioprospecção e Bioensaios (BIOprospecTA), que integra grupos de todo o país, otimizando o aproveitamento das competências já instaladas para a bioprospecção de microrganismos, plantas, invertebrados, vertebrados e organismos marinhos. Dos 104 projetos relacionados às ciências vegetais, 35 realizaram a bioprospecção da flora brasileira, em diversas áreas como Química, Botânica, Fisiologia e Morfologia Vegetal, (Quimio)taxonomia Vegetal, Ecologia de Ecossistemas, Genética Vegetal, Recursos Florestais, Engenharia Florestal, dentre outros, levando a milhares de publicações, ao engajamento de centenas de estudantes e ao entendimento mais profundo dos produtos naturais em diferentes modelos biológicos por meio da análise de micromoléculas auxiliada por estratégias computacionais e espectrométricas, além de avaliações farmacológicas. O desenvolvimento de abordagens ômicas ampliou a visão sobre perfil químico dos organismos, possibilitou o estudo integrado e concomitante de várias amostras, e a anotação mais rápida de moléculas conhecidas, por meio do uso de técnicas hifenadas, quimiométricas e redes moleculares. Isso também contribuiu para superar a falta de informação sobre a segurança e eficácia dos fitopreparados, em projetos que tratam da padronização de produtos fitoterápicos, de acordo com normas internacionais. O programa BIOTA-FAPESP também tem focado em aspectos ambientais, de acordo com os princípios da Química Verde e teve reflexos positivos na colaboração internacional, no número e no impacto das publicações científicas e na parceria com empresas, etapa crucial para agregar valor e expandir a cadeia produtiva de bioprodutos. Ainda, a compilação, sistematização e compartilhamento de dados foram contemplados com a criação da base de dados NUBBEDB, de livre acesso, e que se integra com bases internacionais (ACD/labs, American Chemical Society - ACS), auxiliando pesquisadores e empresas no desenvolvimento de diferentes áreas da ciência, tecnologia, fortalecendo a bioeconomia e subsidiando políticas públicas.

13.
J Cheminform ; 13(1): 64, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488889

ABSTRACT

We report the major conclusions of the online open-access workshop "Computational Applications in Secondary Metabolite Discovery (CAiSMD)" that took place from 08 to 10 March 2021. Invited speakers from academia and industry and about 200 registered participants from five continents (Africa, Asia, Europe, South America, and North America) took part in the workshop. The workshop highlighted the potential applications of computational methodologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads. During 3 days, the participants of this online workshop received an overview of modern computer-based approaches for exploring NP discovery in the "omics" age. The invited experts gave keynote lectures, trained participants in hands-on sessions, and held round table discussions. This was followed by oral presentations with much interaction between the speakers and the audience. Selected applicants (early-career scientists) were offered the opportunity to give oral presentations (15 min) and present posters in the form of flash presentations (5 min) upon submission of an abstract. The final program available on the workshop website ( https://caismd.indiayouth.info/ ) comprised of 4 keynote lectures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting report also references internet resources for computational biology in the area of secondary metabolites that are of use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop concluded with an online survey form to be completed by speakers and participants for the goal of improving any subsequent editions.

14.
Food Chem ; 363: 130227, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34120053

ABSTRACT

Exploratory factor analysis was applied to determine the chemical differences between fruitbodies of three Agaricus subrufescens mushroom strains [from Japan (JP), Brazil (ABZ), and Belgium (T2)] grown with handmade and commercial supplements. The composition of the ABZ strain cultivated with agro-industrial waste supplement presented a high nutritional composition regarding the amounts of fibre and protein, similar to mushrooms cultivated with the commercial supplement. The chromatographic fingerprints obtained for T2 and JP strains grown with commercial supplements presented similar profiles compared to those cultivated with the supplement based on peanut and the mix of supplements. The chromatographic analysis also showed that the similarities are correlated with the relative abundance of antioxidant compounds annotated by HPLC-MS, such as vanillic acid deoxyhexoside, caffeic acid hexoside, catechin hexosemalonate, digallic acid, cinnamic acid derivative, and p-coumaroylmalic acid. This study showed that handmade supplements based on agro-industrial waste could be viable alternatives for replacing high-cost supplements.


Subject(s)
Agaricus , Antioxidants , Dietary Fiber , Dietary Supplements
15.
Molecules ; 26(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921198

ABSTRACT

Cyclooxygenase (COX) and lipoxygenase (LOX) are key targets for the development of new anti-inflammatory agents. LOX, which is involved in the biosynthesis of mediators in inflammation and allergic reactions, was selected for a biochemical screening campaign to identify LOX inhibitors by employing the main natural product library of Brazilian biodiversity. Two prenyl chalcones were identified as potent inhibitors of LOX-1 in the screening. The most active compound, (E)-2-O-farnesyl chalcone, decreased the rate of oxygen consumption to an extent similar to that of the positive control, nordihydroguaiaretic acid. Additionally, studies on the mechanism of the action indicated that (E)-2-O-farnesyl chalcone is a competitive LOX-1 inhibitor. Molecular modeling studies indicated the importance of the prenyl moieties for the binding of the inhibitors to the LOX binding site, which is related to their pharmacological properties.


Subject(s)
Chalcones/pharmacology , Drug Evaluation, Preclinical , Lipoxygenase Inhibitors/pharmacology , Models, Molecular , Prenylation , Chalcones/chemistry , Inhibitory Concentration 50 , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemistry , Molecular Docking Simulation , Oxygen Consumption/drug effects
16.
Bioorg Chem ; 110: 104773, 2021 05.
Article in English | MEDLINE | ID: mdl-33744807

ABSTRACT

In the present study, a series of chalcones and their B-aryl analogues were prepared and evaluate as inhibitors of myeloperoxidase (MPO) chlorinating activity, using in vitro and ex vivo assays. Among these, B-thiophenyl chalcone (analogue 9) demonstrated inhibition of in vitro and ex vivo MPO chlorinating activity, exhibiting IC50 value of 0.53 and 19.2 µM, respectively. Potent ex vivo MPO inhibitors 5, 8 and 9 were not toxic to human neutrophils at 50 µM, as well as displayed weak 2,2-diphenyl-1-pycrylhydrazyl radical (DPPH•) and hypochlorous acid (HOCl) scavenger abilities. Docking simulations indicated binding mode of MPO inhibitors, evidencing hydrogen bonds between the amino group at 4'position (ring A) of chalcones with Gln91, Asp94, and Hys95 MPO residues. In this regard, the efficacy and low toxicity promoted aminochalcones and arylic analogues to the rank of hit compounds in the search for new non-steroidal anti-inflammatory compounds.


Subject(s)
Chalcones/chemical synthesis , Chalcones/pharmacology , Peroxidase/antagonists & inhibitors , Cell Survival/drug effects , Drug Design , Free Radical Scavengers , Humans , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Neutrophils/drug effects , Protein Conformation
17.
J Nat Prod ; 84(1): 81-90, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33397096

ABSTRACT

Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.


Subject(s)
Cyclotides/drug effects , Cyclotides/metabolism , Fabaceae/chemistry , Lymphocytes/metabolism , Solanaceae/chemistry , Violaceae/chemistry , Brazil , Cyclotides/chemistry , Humans , Lymphocytes/chemistry , Lymphocytes/drug effects , Magnoliopsida , Mass Spectrometry , Plant Leaves/chemistry , Plant Leaves/metabolism
18.
Planta Med ; 87(1-02): 6-23, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348409

ABSTRACT

Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Brazil , Models, Molecular , Mosquito Control , Mosquito Vectors
19.
Phytochem Anal ; 32(4): 562-574, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33118221

ABSTRACT

INTRODUCTION: Soybean is one of the most important crops in the world, an important source of isoflavones, and used to treat various chronic diseases. High-performance liquid chromatography (HPLC), associated with multivariate experiments and green solvents, is increasingly used to develop comprehensive elution methods for quality control of plants and derivatives. OBJECTIVE: The work aims to establish a HPLC fingerprinting method for soybean seeds employing Green Chemistry Principles, a sustainable solvent with low toxicity, and a comprehensive experimental design that reduces the number of experiments. MATERIALS AND METHODS: The fingerprinting method was optimised through Design of Experiments by evaluating seven chromatographic variables: initial percentage of ethanol (X1), final percentage of ethanol (X2), temperature (X3), percentage of acetic acid in water (X4), flow rate (X5), run time (X6), and stationary phase (X7). The dependent variable was the number of peaks (n). RESULTS: An initial factorial design for screening purposes indicated that the most significant quantitative parameters to separate soybean metabolites were X1 and X3. The conditions were optimised by a Doehlert design, to obtain a HPLC-PAD (photodiode array detector) fingerprinting of the polar extract of soybean seeds with the markers identified by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). The optimum fingerprinting method was determined as 5-55% of ethanol in 30 min, at 35°C, and flow rate of 1 mL/min, by employing a phenyl-hexyl column (150 mm × 4.6 mm). CONCLUSION: The developed green method enabled markers of soybean to be separated and identified and could be an eco-friendlier alternative for soybean quality control that covered seven Green Analytical Chemistry Principles.


Subject(s)
Glycine max , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Quality Control , Research Design , Spectrometry, Mass, Electrospray Ionization
20.
J Nat Prod ; 83(11): 3239-3249, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33196207

ABSTRACT

Proper chromatographic methods may reduce the challenges inherent in analyzing natural product extracts, especially when utilizing hyphenated detection techniques involving mass spectrometry. As there are many variations one can introduce during chromatographic method development, this can become a daunting and time-consuming task. To reduce the number of runs and time needed, the use of instrumental automatization and commercial software to apply Quality by Design and statistical analysis automatically can be a valuable approach to investigate complex matrices. To evaluate this strategy in the natural products workflow, a mixture of nine species from the family Malpighiaceae was investigated. By this approach, the entire data collection and method development procedure (comprising screening, optimization, and robustness simulation) was accomplished in only 4 days, resulting in very low limits of detection and quantification. The analysis of the individual extracts also proved the efficiency of the use of a mixture of extracts for this workflow. Molecular networking and library searches were used to annotate a total of 61 compounds, including O-glycosylated flavonoids, C-glycosylated flavonoids, quinic/shikimic acid derivatives, sterols, and other phenols, which were efficiently separated by the method developed. These results support the potential of statistical tools for chromatographic method optimization as an efficient approach to reduce time and maximize resources, such as solvents, to get proper chromatographic conditions.


Subject(s)
Biological Products/chemistry , Malpighiaceae/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection , Plant Extracts/chemistry , Reproducibility of Results , Species Specificity , Tandem Mass Spectrometry/methods , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...