Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 19(9): 1122-1133, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32756690

ABSTRACT

The use of photolabile protecting groups (PPGs) has been growing in emphasis for decades, and nowadays they enable cutting-edge results in numerous fields ranging from organic synthesis to neurosciences. PPGs are chemical entities that can be conjugated to a biomolecule to hide its biological activity, forming a stable so called "caged compound". This conjugate can be simply cleaved by light and therefore, the functionality of the biomolecule is restored with the formation of a PPG by-product. However, there is a sizeable need for PPGs that are able to quantify the "uncaging" process. In this review, we will discuss several strategies leading to an acute quantification of the uncaging events by fluorescence. In particular, we will focus on how molecular engineering of PPG could open new opportunities by providing easy access to photoactivation protocols.

2.
Org Biomol Chem ; 16(33): 6115-6122, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30094422

ABSTRACT

o-Nitrobenzyl (o-NB) derivatives are the most widely applied photoremovable groups for the study of dynamic biological processes. By introducing different substituents to the benzylic position we were able to generate a fluorescence signal upon irradiation. This signal originates from the formation of a nitrosoketone by-product able to achieve a keto-enol tautomerism leading to pi-conjugated α-hydroxystilbene derivatives. These o-NB caging groups can be used to directly monitor the uncaging event by the release of a detectable fluorescent side-product.

3.
Chem Commun (Camb) ; 53(96): 12857-12877, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29115314

ABSTRACT

Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.


Subject(s)
Photochemotherapy , Photons , Photosensitizing Agents/pharmacology , Humans , Photosensitizing Agents/chemistry
4.
Phys Chem Chem Phys ; 18(31): 21954-65, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27439678

ABSTRACT

A complete one- and two-photon spectroscopic and photophysical characterization of three diketopyrrolopyrrole (DPP)-porphyrin conjugates is reported. The increased conjugation introduced by the incremental addition of one, two and four DPP units on the meso porphyrin positions strongly affects the optical properties of the systems. Ground and triplet excited state absorption spectra show a gradual broadening and bathochromic shift and a trend to lower energies is also observed for both fluorescence and phosphorescence emission. Interestingly, the fluorescence quantum yield increases along the series, leading to remarkable NIR emission properties for the larger derivatives. Unlike the model porphyrin, all derivatives exhibit high two-photon absorption activity. An increase in two-photon absorption cross-section in the regions 800-840 nm and 910-930 nm is observed moving from one DPP to two DPP appended units, with a value of the order of 4000 GM at 910 nm for the latter system. The four compounds show high efficiency in generating singlet oxygen, with yields ranging from 0.7 to 0.5, envisaging favourable applications in both one- and two-photon photodynamic therapies. A detailed theoretical exploration of both linear (absorption and emission) and non-linear (two-photon absorption) properties proposes an analysis of the experimental spectra and a comprehensive interpretation of the two-photon activity within the series of compounds.

5.
Pharmacogenomics J ; 13(1): 80-93, 2013 Feb.
Article in English | MEDLINE | ID: mdl-21969101

ABSTRACT

Several genetic diseases are triggered by nonsense mutations leading to the formation of truncated and defective proteins. Aminoglycosides have the capability to mediate a bypass of stop mutations during translation thus resulting in a rescue of protein expression. So far no attention has been directed to obesity-associated stop mutations as targets for nonsense suppression. Herein, we focus on the characterization of the melanocortin-4-receptor (MC4R) nonsense allele W16X identified in obese subjects. Cell culture assays revealed a loss-of-function of Mc4r(X16) characterized by impaired surface expression and defect signaling. The aminoglycoside G-418 restored Mc4r(X16) function in vitro demonstrating that Mc4r(X16) is susceptible to nonsense suppression. For the evaluation of nonsense suppression in vivo, we generated a Mc4r(X16) knock-in mouse line by gene targeting. Mc4r(X16) knock-in mice developed hyperphagia, impaired glucose tolerance, severe obesity and an increased body length demonstrating that this new mouse model resembles typical characteristics of Mc4r deficiency. In a first therapeutic trial, the aminoglycosides gentamicin and amikacin induced no amelioration of obesity. Further experiments with Mc4r(X16) knock-in mice will be instrumental to establish nonsense suppression for Mc4r as an obesity-associated target gene expressed in the central nervous system.


Subject(s)
Codon, Nonsense , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Aminoglycosides/genetics , Aminoglycosides/metabolism , Animals , Body Composition/genetics , Body Temperature/genetics , Body Weight/genetics , COS Cells , Cell Line , Chlorocebus aethiops , Energy Intake/genetics , Gene Expression/genetics , HEK293 Cells , Humans , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism
6.
Bioorg Med Chem ; 18(22): 7753-8, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20554207

ABSTRACT

An uncaging process refers to a fast and efficient release of a biomolecule after photochemical excitation from a photoactivatable precursor. Two-photon excitation produces excited states identical to standard UV excitation while overcoming major limitations when dealing with biological materials, like spatial resolution, tissue penetration and toxicity and has therefore been applied to the uncaging of different biological effectors. A literature survey of two-photon uncaging of biomolecules is described in this article, including applications in cellular- and neurobiology.


Subject(s)
Organic Chemicals/chemistry , Photons , Azides/chemistry , Central Nervous System/chemistry , Central Nervous System/metabolism , Coumarins/chemistry , Fluorescent Dyes/chemistry , Neurotransmitter Agents/chemistry , Nitrobenzenes/chemistry , Ultraviolet Rays
7.
Inorg Chem ; 40(19): 4845-55, 2001 Sep 10.
Article in English | MEDLINE | ID: mdl-11531430

ABSTRACT

The synthesis, spectroscopic properties, and electrochemistry of six different alkyl- and aryl-substituted Co(III) corroles are presented. The investigated compounds contain methyl, ethyl, phenyl, or substituted phenyl groups at the eight beta-positions of the corrole macrocycle and four derivatives also contain a phenyl group at the 10-meso position of the macrocycle. Each cobalt corrole undergoes four reversible oxidations in CH(2)Cl(2) containing 0.1 M tetra-n-butylammonium perchlorate and exists as a dimer in its singly and doubly oxidized forms. The difference in potential between the first two oxidations is associated with the degree of interaction between the two corrole units of the dimer and ranges from an upper value of 0.62 V, in the case of (Me(6)Et(2)Cor)Co, to a lower value of about 0.17 V, in the case of four compounds which have a phenyl group located at the 10-meso position of the macrocycle. These Co(III) corroles strongly coordinate two pyridine molecules or one carbon monoxide molecule in CH(2)Cl(2) media, and ligand binding constants were evaluated using spectroscopic and electrochemical methods. The structure of (Me(4)Ph(5)Cor)Co(py)(2) was also determined by X-ray diffraction. Crystal data: (Me(4)Ph(5)Cor)Co(py)(2).3CH(2)Cl(2).H(2)O, orthorhombic, a = 19.5690(4) A, b = 17.1070(6) A, c = 15.9160(6) A, V = 5328.2(5) A(3), space group Pna2(1), Z = 2, 35 460 observations, R(F) = 0.069.

8.
Inorg Chem ; 40(17): 4134-42, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11487315

ABSTRACT

The preparation and characterization of a new series of mixed metal cofacial anthracene-bridged diporphyrins (DPA) containing a GaL fragment (L = OMe, OH) and another metallic center (M = GaL, Ru(CO)(OH), Co, and H(2) (i.e. free base)) are reported. The luminescence properties at 298 and 77 K, in degassed EtOH solution, are also reported, and are characterized by a weak pipi fluorescence (2 < tau(F) < 7 ns) arising from the low energy Q-bands (S(1)-->S(0)). In the mixed diporphyrin systems, a strong pipi fluorescence is detected from the free base, while the transition metalloporphyrins of Co(II) and Ru(II) do not emit. The homobimetallic di[Ga(OMe)] species exhibits an unprecedented double (pi)(pi) fluorescence arising from the two lowest energy absorption Q-bands. On the basis of a comparison with photophysical data on GaL monoporphyrins, the weak fluorescence and absence of phosphorescence for most cases indicate efficient intramolecular quenching. To define structural features, the X-ray structures of (DPA)[Ga(OMe)](2) (2), (DPA)[Ga-(OH)-Ru(CO)] (5a), and (DPA)[Ga(OMe)-Ru(MeOH)(CO)] (5b) have been obtained. The structures of 5a and 5b demonstrate an interesting aspect of the structural chemistry of these ligands related to the internal methoxide and methanolic ligands in 5b (resulting in a large interplanar separation and center-to-center distance) and the internal metal-bridging hydroxyl ligand in 5a (resulting in a small interplanar separation and center-to-center distance). These data support previously reported discussions on the ability of the DPA and the DPB analogue (diporphyrinylbiphenylenyl) ligands to open and close their "bite" around the binding pocket between the porphyrin macrocycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...