Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828816

ABSTRACT

Time-domain spectroscopy encompasses a wide range of techniques, such as Fourier-transform infrared, pump-probe, Fourier-transform Raman, and two-dimensional electronic spectroscopies. These methods enable various applications, such as molecule characterization, excited state dynamics studies, or spectral classification. Typically, these techniques rarely use sampling schemes that exploit the prior knowledge scientists typically have before the actual experiment. Indeed, not all sampling coordinates carry the same amount of information, and a careful selection of the sampling points may notably affect the resulting performance. In this work, we rationalize, with examples, the various advantages of using an optimal sampling scheme tailored to the specific experimental characteristics and/or expected results. We show that using a sampling scheme optimizing the Fisher information minimizes the variance of the desired parameters. This can greatly improve, for example, spectral classifications and multidimensional spectroscopy. We demonstrate how smart sampling may reduce the acquisition time of an experiment by one to two orders of magnitude, while still providing a similar level of information.

2.
J Phys Chem Lett ; 14(50): 11438-11446, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38085697

ABSTRACT

This study elucidates the information content that is extracted from action-2D electronic spectroscopy (A-2DES) when the output intensity is not proportional to the number of excitations generated. Such a scenario can be realized in both fluorescence and photocurrent detection because of direct interaction like exciton-exciton annihilation or indirect effects in the signal generation or detection. By means of an intuitive probabilistic model supported by nonlinear response theory, the study concludes that in molecular assemblies the ground-state bleaching contribution can dominate the nonlinear signal and partially or completely hide the stimulated emission. In this case, the spectral effect resembles incoherent mixing, even in the absence of exciton-exciton annihilation, implying reduced information about the excited-state dynamics with an increasing number of chromophores. This finding has important implications for the selection of samples for A-2DES as well as for its interpretation.

3.
J Phys Chem Lett ; 14(30): 6872-6879, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37490770

ABSTRACT

Action-detection has expanded the scope and applicability of 2D electronic spectroscopy, while posing new challenges for the unambiguous interpretation of spectral features. In this context, identifying the origin of cross-peaks at early waiting times is not trivial, and incoherent mixing is often invoked as an unwanted contribution masking the nonlinear signal. In this work, we elaborate on the relation between the nonlinear response and the incoherent mixing contribution by analyzing the action signal in terms of one- and two-particle observables. Considering a weakly interacting molecular dimer, we show how cross-peaks at early waiting times, reflecting exciton-exciton annihilation dynamics, can be equivalently interpreted as arising from incoherent mixing. This equivalence, on the one hand, highlights the information content of spectral features related to incoherent mixing and, on the other hand, provides an efficient numerical scheme to simulate the action response of weakly interacting systems.

4.
J Phys Chem Lett ; 14(7): 1999-2005, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36794828

ABSTRACT

Understanding the spatial dynamics of nanoscale exciton transport beyond the temporal decay is essential for further improvements of nanostructured optoelectronic devices, such as solar cells. The diffusion coefficient (D) of the nonfullerene electron acceptor Y6 has so far only been determined indirectly, from singlet-singlet annihilation (SSA) experiments. Here, we present the full picture of the exciton dynamics, adding the spatial domain to the temporal one, by spatiotemporally resolved photoluminescence microscopy. In this way, we directly track diffusion and we are able to decouple the real spatial broadening from its overestimation given by SSA. We measured the diffusion coefficient, D = 0.017 ± 0.003 cm2/s, which gives a Y6 film diffusion length of L=Dτ≈35 nm. Thus, we provide an essential tool that enables a direct and free-of-artifacts determination of diffusion coefficients, which we expect to be pivotal for further studies on exciton dynamics in energy materials.

5.
J Phys Chem Lett ; 12(16): 3983-3988, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33877838

ABSTRACT

The performance of nonfullerene-acceptor-(NFA)-based organic solar cells is rapidly approaching the efficiency of inorganic cells. The chemical versatility of NFAs extends the light-harvesting range to the infrared, while preserving a considerably high open-circuit-voltage, crucial to achieve power-conversion efficiencies >17%. Such low voltage losses in the charge separation process have been attributed to a low-driving-force and efficient exciton dissociation. Here, we address the nature of the subpicosecond dynamics of electron/hole transfer in PM6/Y6 solar cells. While previous reports focused on active layers only, we developed a photocurrent-detected two-dimensional spectroscopy to follow the charge transfer in fully operating devices. Our measurements reveal an efficient hole-transfer from the Y6-acceptor to the PM6-donor on the subpicosecond time scale. On the contrary, at the same time scale, no electron-transfer is seen from the donor to the acceptor. These findings, putting ultrafast spectroscopy in action on operating optoelectronic devices, provide insight for further enhancing NFA solar cell performance.

6.
J Phys Chem Lett ; 11(19): 7972-7980, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32886518

ABSTRACT

The biological light-harvesting process offers an unlimited source of inspiration. The high level of control, adaptation capability, and efficiency challenge humankind to create artificial biomimicking nanoarchitectures with the same performances to respond to our energy needs. Here, in the extensive search for design principles at the base of efficient artificial light harvesters, an approach based on self-assembly of pigment-peptide conjugates is proposed. The solvent-driven and controlled aggregation of the peptide moieties promotes the formation of a dense network of interacting pigments, giving rise to an excitonic network characterized by intense and spectrally wide absorption bands. The ultrafast dynamics of the nanosystems studied through two-dimensional electronic spectroscopy reveals that the excitation energy is funneled in an ultrafast time range (hundreds of femtoseconds) to a manifold of long-living dark states, thus suggesting the considerable potentiality of the systems as efficient harvesters.


Subject(s)
Biomimetic Materials/chemistry , Light-Harvesting Protein Complexes/chemistry , Nanostructures/chemistry , Peptides/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Amino Acid Sequence , Kinetics , Light , Molecular Conformation , Molecular Dynamics Simulation , Spectrometry, Fluorescence
7.
J Chem Phys ; 152(3): 034201, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31968969

ABSTRACT

The nature of the photoexcited triplet state of free-base 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) has been investigated by advanced Electron Paramagnetic Resonance (EPR) techniques combined with quantum chemical calculations. The zero-field splitting (ZFS) parameters, D and E, the orientation of the transition dipole moment in the ZFS tensor frame, and the proton hyperfine couplings have been determined by magnetophotoselection-EPR and pulse electron-nuclear double resonance spectroscopy. Both time-resolved and pulse experiments exploit the electron spin polarization of the photoexcited triplet state. Comparison of the magnetic observables with computational results, including CASSCF calculations of the ZFS interaction tensor, provides an accurate picture of the triplet-state electronic structure. The theoretical investigation has been integrated with a systematic analysis on the parent free-base porphyrin molecule to assess the effect of the sulfonatophenyl substituents on the magnetic tensors. Additionally, the magnetophotoselection effects are discussed in terms of tautomerization in the excited singlet state of H2TPPS4-.

8.
Phys Chem Chem Phys ; 21(7): 3512-3526, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30052253

ABSTRACT

BODIPY dyes are used in a variety of applications because of their peculiar spectroscopic and photo-physical properties that vary depending on the stereochemistry of the functional groups attached to the boron-dipyrromethene core structure. In this work, we have applied several computational methods, adapted for semi-rigid molecules based on the Franck-Condon principle, for the study of the optical properties of BODIPY systems and for the understanding of the influence of functional groups on their spectroscopic features. We have analyzed the electronic spectra of two styryl substituted BODIPY molecules of technological interest, properly taking into account the vibronic contribution. For comparison with recently recorded experimental data in methanol, the vibrationally resolved electronic spectra of these systems were computed using both Time-Independent (TI) and Time-Dependent (TD) formalisms. The first step toward the analysis of optical properties of the styryl modified BODIPYs was a benchmark of several density functionals, to select the most appropriate one. We have found that all benchmarked functionals provide good results in terms of band shape but some of them show strong discrepancies in terms of band position. Beyond the issue of the electronic structure calculation method, different levels of sophistication can be adopted for the calculation of vibronic transitions. In this study, the effect of mode couplings and the influence of the Herzberg-Teller terms on the theoretical spectra has been investigated. It has been found that all levels of theory considered give reproducible results for the investigated systems: band positions and shapes are similar at all levels and little improvements have been found in terms of band shape with the inclusion of Herzberg-Teller effect. Inclusion of temperature effects proved to be challenging due to the important impact of large amplitude motions. Better agreement can be achieved by adopting a suitable set of coordinates coupled with a reduced-dimensionality scheme.

9.
Nat Commun ; 9(1): 3160, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30089871

ABSTRACT

The subtle details of the mechanism of energy flow from carotenoids to chlorophylls in biological light-harvesting complexes are still not fully understood, especially in the ultrafast regime. Here we focus on the antenna complex peridinin-chlorophyll a-protein (PCP), known for its remarkable efficiency of excitation energy transfer from carotenoids-peridinins-to chlorophylls. PCP solutions are studied by means of 2D electronic spectroscopy in different experimental conditions. Together with a global kinetic analysis and multiscale quantum chemical calculations, these data allow us to comprehensively address the contribution of the potential pathways of energy flow in PCP. These data support dominant energy transfer from peridinin S2 to chlorophyll Qy state via an ultrafast coherent mechanism. The coherent superposition of the two states is functional to drive population to the final acceptor state, adding an important piece of information in the quest for connections between coherent phenomena and biological functions.


Subject(s)
Carotenoids/chemistry , Chlorophyll/chemistry , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Protozoan Proteins/chemistry , Biophysical Phenomena , Carotenoids/metabolism , Chlorophyll/metabolism , Computer Simulation , Dinoflagellida/chemistry , Kinetics , Light-Harvesting Protein Complexes/metabolism , Models, Molecular , Protozoan Proteins/metabolism , Spectrum Analysis
10.
Phys Chem Chem Phys ; 20(27): 18176-18183, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29961782

ABSTRACT

Although the harnessing of multiple and hot excitons is a prerequisite for many of the groundbreaking applications of semiconductor quantum dots (QDs), the characterization of their dynamics through conventional spectroscopic techniques is cumbersome. Here, we show how a careful analysis of 2DES maps acquired in different configurations (BOXCARS and pump-probe geometry) allows the tracking and visualization of intraband Auger relaxation mechanisms, driving the hot carrier cooling, and interband bi- and tri-exciton recombination dynamics. The results obtained on archetypal core-shell CdSe/ZnS QDs suggest that, given the global analysis of the resulting datasets, 2D electronic spectroscopy techniques can successfully and efficiently dispel the intertwined dynamics of fast and ultrafast recombination processes in nanomaterials. Hence, we propose this analysis scheme to be used in future research on novel quantum confined systems.

11.
Nanoscale ; 10(25): 11913-11922, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29901055

ABSTRACT

Here we present a comprehensive study on the photophysics of QDs-fullerene blends, aiming to elucidate the impact of ligands on the extraction of carriers from QDs. We investigated how three different ligands (oleylamine, octadecanethiol and propanethiol) influence the dynamics of charge generation, separation, and recombination in blends of CdSe/CdS core/shell QDs and PCBM. We accessed each relevant process directly by combining the results from both optical and magnetic spectroscopies. Transient absorption measurements revealed a faster interaction dynamics in thiol-capped ligands. Through phenomenological modeling of the interaction processes, i.e., energy transfer and electron transfer, we estimated the suppression of exciton migration and the enhancement of electron transfer processes when alkyl-thiols are employed as ligands. Contextually, we report the profound impact of the ligands' alkyl chain length, leading to strengthened interactions with PCBM acceptors. Quantitatively, we measured a 10-fold increase in the electron transfer rate when oleylamine ligands were exchanged with propanethiol ligands. EPR spectroscopy gave access to subtle details regarding both the enhanced charge generation and lower binding energy of charge-transfer states in blends compared to PCBM alone. Moreover, through pulsed EPR techniques, we inferred the localization of deep electron traps in localized sites close to QDs in the blends. Therefore, our thorough characterization evidenced the essential role of ligands in determining QD interactions. We believe that these discoveries will contribute to the efficient incorporation of QDs in existing organic PV technologies.

12.
J Phys Chem Lett ; 9(5): 1079-1085, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29446639

ABSTRACT

In this work, we demonstrate the use of two-dimensional electronic spectroscopy (2DES) to study the mechanism and time scale of the femtosecond Stokes shift dynamics in molecules characterized by intramolecular charge transfer, such as distyryl-functionalized boron dipyrromethene (BODIPY) molecules. The obtained results demonstrate that 2DES allows clear and direct visualization of the phenomenon. The analysis of the 2D data in terms of 2D frequency-frequency decay associated maps provides indeed not only the time scale of the relaxation process but also the starting and the final point of the energy flow and the associated reorganization energy, identified by looking at the coordinates of a negative signature below the diagonal. The sensitivity of the 2DES technique to vibrational coherence dynamics also allowed the identification of a possible relaxation mechanism involving specific interaction between a vibrational mode of the dye and the solvent.

13.
Phys Chem Chem Phys ; 19(40): 27173-27177, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28991960

ABSTRACT

In this work, the electronic structure of the triplet state of self-assembled J-aggregates of tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been characterized by means of time-resolved electron paramagnetic resonance spectroscopy. Several insights into the triplet properties of the aggregate have been gained through comparison with the corresponding monomeric unit in both free base and acidified forms. Molecular distortions in the monomeric acidified TPPS cause variation in its zero-field splitting parameters and a redirection of triplet spin sublevel activity. The aggregation process does not alter the mechanism of triplet state population compared to the acidified monomer but it is accompanied by a further reduction in the zero-field splitting parameter D, which is possibly indicative of the formation of a delocalized triplet state species. The detection of a long-lived spin-polarized radical species also proves polaron generation and movement to a trap site in the J-aggregates.

14.
Sci Rep ; 7(1): 11389, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900171

ABSTRACT

The non-radiative relaxation of the excitation energy from higher energy states to the lowest energy state in chlorophylls is a crucial preliminary step for the process of photosynthesis. Despite the continuous theoretical and experimental efforts to clarify the ultrafast dynamics of this process, it still represents the object of an intense investigation because the ultrafast timescale and the congestion of the involved states makes its characterization particularly challenging. Here we exploit 2D electronic spectroscopy and recently developed data analysis tools to provide more detailed insights into the mechanism of internal conversion within the Q-bands of chlorophyll a. The measurements confirmed the timescale of the overall internal conversion rate (170 fs) and captured the presence of a previously unidentified ultrafast (40 fs) intermediate step, involving vibronic levels of the lowest excited state.


Subject(s)
Chlorophyll A/chemistry , Mechanical Phenomena , Energy Transfer , Photosynthesis , Spectrum Analysis , Spinacia oleracea/chemistry
15.
J Phys Chem Lett ; 7(24): 4996-5001, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973862

ABSTRACT

The intraband exciton dynamics of molecular aggregates is a crucial initial step to determine the possibly coherent nature of energy transfer and its implications for the ensuing interband relaxation pathways in strongly coupled excitonic systems. In this work, we fully characterize the intraband dynamics in linear J-aggregates of porphyrins, good model systems for multichromophoric assemblies in biological antenna complexes. Using different 2D electronic spectroscopy schemes together with Raman spectroscopy and theoretical modeling, we provide a full characterization of the inner structure of the main one-exciton band of the porphyrin aggregates. We find that the redistribution of population within the band occurs with a characteristic time of 280 fs and dominates the modulation of an electronic coherence. While we do not find that the coupling to vibrations significantly affects the dynamics of excitonic coherence, our results suggest that exciton fluctuations are nevertheless highly correlated.

16.
Opt Express ; 24(21): 24773-24785, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828197

ABSTRACT

2D electronic spectroscopy is a widely exploited tool to study excited state dynamics. A high density of information is enclosed in 2D spectra. A crucial challenge is to objectively disentangle all the features of the third order optical signal. We propose a global analysis method based on the variable projection algorithm, which is able to reproduce simultaneously coherence and population dynamics of rephasing and non-rephasing contributions. Test measures at room temperature on a standard dye are used to validate the procedure and to discuss the advantages of the proposed methodology with respect to the currently employed analysis procedures.

17.
Chemphyschem ; 15(2): 310-9, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24265124

ABSTRACT

Time-resolved fluorescence and transient absorption experiments uncover a distinct change in the relaxation dynamics of the homo-dimer formed by two 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]-N-methylpyrrole ditriflate (M) units linked by a short alkyl chain when compared to that of the monomer M. Fluorescence decay traces reveal characteristic decay times of 1.1 ns and 210 ps for M and the dimer, respectively. Transient absorption spectra in the spectral range of 425-1050 nm display similar spectral features for both systems, but strongly differ in the characteristic relaxation times gathered from a global fit of the experimental data. To rationalize the data we propose that after excitation of the dimer the energy localizes on one M branch and then decays to a dark state, peculiar only of the dimer. This dark state relaxes to the ground state within 210 ps through non-radiative relaxation. The nature of the dark state is discussed in relation to different possible photophysical processes such as excimer formation and charge transfer between the two M units. Anisotropy decay traces of the probe-beam differential transmittance of M and the dimer fall on complete different time scales as well. The anisotropy decay for M is satisfactorily ascribed to rotational diffusion in DMSO, whereas for the dimer it occurs on a faster time scale and is likely caused by energy-transfer processes between the two monomer M units.

SELECTION OF CITATIONS
SEARCH DETAIL
...